Trang chủ Lớp 8 SGK Toán 8 - Chân trời sáng tạo Giải mục 1 trang 19, 20 Toán 8 tập 1– Chân trời...

Giải mục 1 trang 19, 20 Toán 8 tập 1– Chân trời sáng tạo: Kết quả của mỗi bạn có đúng không? Giải thích...

Hướng dẫn giải HĐ1, Thực hành 1 , Thực hành 2, Thực hành 3, Vận dụng 1 mục 1 trang 19, 20 SGK Toán 8 tập 1– Chân trời sáng tạo Bài 3. Hằng đẳng thức đáng nhớ. Ba bạn An, Mai và Bình viết biểu thức biểu thị tổng diện tích (S) của các phần tô màu trong Hình 1 như sau...Kết quả của mỗi bạn có đúng không? Giải thích

Hoạt động1

a) Ba bạn An, Mai và Bình viết biểu thức biểu thị tổng diện tích \(S\) của các phần tô màu trong Hình 1 như sau:

Kết quả của mỗi bạn có đúng không? Giải thích.

b) Thực hiện phép nhân và rút gọn đa thức của bạn An.

c) Bằng cách làm tương tự ở câu b), có thể biến đổi biểu thức \({\left( {a - b} \right)^2}\) thành biểu thức nào?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng quy tắc nhân đa thức.

Answer - Lời giải/Đáp án

a) Chiều dài và chiều rộng của hình 1 lần lượt là \(a + b\), \(a + b\)

Tổng diện tích \(S\) của hình 1 là:

\(S = \left( {a + b} \right)\left( {a + b} \right) = a.a + ab + ba + b.b = {a^2} + ab + ba + {b^2} = {a^2} + 2ab + {b^2}\) hay \(S = {\left( {a + b} \right)^2} = {a^2} + {b^2} + ab + ba = {a^2} + 2ab + {b^2}\)

Vậy cả ba bạn An, Mai và Bình đều nói đúng kết quả.

b) \(S = {\left( {a + b} \right)^2} = \left( {a + b} \right)\left( {a + b} \right) = a.a + ab + ba + b.b = {a^2} + 2ab + {b^2}\)

c) Ta có: \({\left( {a - b} \right)^2} = \left( {a - b} \right)\left( {a - b} \right) = a.a - ab - ba + b.b = {a^2} - 2ab + {b^2}\)


Thực hành 1

Tính:

a) \({\left( {3x + 1} \right)^2}\)

b) \({\left( {4x + 5y} \right)^2}\)

c) \({\left( {5x - \dfrac{1}{2}} \right)^2}\)

d) \({\left( { - x + 2{y^2}} \right)^2}\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng hằng đẳng thức: Bình phương của một tổng, một hiệu

\(\begin{array}{l}{\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\\{\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\end{array}\)

Answer - Lời giải/Đáp án

a) \({\left( {3x + 1} \right)^2} = {\left( {3x} \right)^2} + 2.3x.1 + {1^2} = 9{x^2} + 6x + 1\)

b) \({\left( {4x + 5y} \right)^2} = {\left( {4x} \right)^2} + 2.4x.5y + {\left( {5y} \right)^2} = 16{x^2} + 40xy + 25{y^2}\)

c) \({\left( {5x - \dfrac{1}{2}} \right)^2} = {\left( {5x} \right)^2} - 2.5x.\dfrac{1}{2} + {\left( {\dfrac{1}{2}} \right)^2} = 25{x^2} - 5x + \dfrac{1}{4}\)

d) \({\left( { - x + 2{y^2}} \right)^2} = {\left( { - x} \right)^2} + 2.\left( { - x} \right).\left( {2{y^2}} \right) + {\left( {2{y^2}} \right)^2} = {x^2} - 4x{y^2} + 4{y^4}\)


Thực hành 2

Viết các biểu thức sau thành bình phương của một tổng hoặc một hiệu:

Advertisements (Quảng cáo)

a) \({a^2} + 10ab + 25{b^2}\)

b) \(1 + 9{a^2} - 6a\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Đưa biểu thức về dạng vế phải của hai hằng đẳng thức: Bình phương của một tổng, một hiệu

\(\begin{array}{l}{\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\\{\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\end{array}\)

Answer - Lời giải/Đáp án

a) \({a^2} + 10ab + 25{b^2} = {a^2} + 2.a.5b + {\left( {5b} \right)^2} = {\left( {a + 5b} \right)^2}\)

b) \(1 + 9{a^2} - 6a = 1 - 6a + 9{a^2} = 1 - 2.1.3a + {\left( {3a} \right)^2} = {\left( {1 - 3a} \right)^2}\)


Thực hành 3

Tính nhanh:

a) \({52^2}\)

b) \({98^2}\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Tách số đã cho thành tổng hoặc hiệu của một số tròn chục với một số tự nhiên.

Áp dụng hằng đẳng thức: Bình phương của một tổng, một hiệu

Answer - Lời giải/Đáp án

a) \({52^2} = {\left( {50 + 2} \right)^2} = {50^2} + 2.50.2 + {2^2} = 2500 + 200 + 4 = 2704\)

b) \({98^2} = {\left( {100 - 2} \right)^2} = {100^2} - 2.100.2 + {2^2} = 10000 - 400 + 4 = 9604\)


Vận dụng 1

a) Một mảnh vườn hình vuông có cạnh \(10\)m được mở rộng cả hai cạnh thêm \(x\) (m) như Hình 2a. Viết biểu thức (dạng đa thức thu gọn) biểu thị diện tích mảnh vườn sau khi mở rộng.

b) Một mảnh vườn hình vuông sau khi mở rộng mỗi cạnh \(5\)m thì được một mảnh vườn hình vuông có cạnh là \(x\) (m) như Hình 2b. Viết biểu thức (dạng đa thức thu gọn) biểu thị diện tích mảnh vườn trước khi mở rộng.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng công thức tính diện tích hình vuông

Áp dụng hằng đẳng thức: Bình phương của một tổng, một hiệu.

Answer - Lời giải/Đáp án

a) Độ dài cạnh mảnh vườn hình vuông sau khi mở rộng là: \(x + 10\) (m)

Diện tích mảnh vườn sau khi mở rộng là:

\(\left( {x + 10} \right)\left( {x + 10} \right) = {\left( {x + 10} \right)^2} = {x^2} + 2.x.10 + {10^2} = {x^2} + 20x + 100\) (\({m^2}\))

b) Độ dài cạnh mảnh vườn hình vuông trước khi mở rộng là: \(x - 5\) (m)

Diện tích mảnh vườn hình vuông trước khi mở rộng là: \(\left( {x - 5} \right)\left( {x - 5} \right) = {\left( {x - 5} \right)^2} = {x^2} - 2.x.5 + {5^2} = {x^2} - 10x + 25\) (\({m^2}\))

Advertisements (Quảng cáo)