Trang chủ Lớp 8 SGK Toán 8 - Chân trời sáng tạo Giải mục 4 trang 21 Toán 8 tập 1– Chân trời sáng...

Giải mục 4 trang 21 Toán 8 tập 1– Chân trời sáng tạo: Sử dụng quy tắc chuyển vế và các tính chất của phép toán...

Hướng dẫn giải HĐ4, Thực hành 7, Thực hành 8 , Vận dụng 4 mục 4 trang 21 SGK Toán 8 tập 1– Chân trời sáng tạo Bài 3. Hằng đẳng thức đáng nhớ. Sử dụng quy tắc chuyển vế và các tính chất của phép toán...

Hoạt động4

Sử dụng quy tắc chuyển vế và các tính chất của phép toán, hoàn thành các biến đổi sau vào vở:

\(\begin{array}{l}{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\\{a^3} + {b^3} = {\left( {a + b} \right)^3} - 3{a^2}b - 3a{b^2}\\\;\;\;\;\;\;\;\;\;\; = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)\\\;\;\;\;\;\;\;\;\;\; = \left( {a + b} \right)\left( {...} \right)\\\;\;\;\;\;\;\;\;\;\; = ...\end{array}\) \(\begin{array}{l}{\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\\{a^3} - {b^3} = {\left( {a - b} \right)^3} + 3{a^2}b - 3a{b^2}\\\;\;\;\;\;\;\;\;\;\; = {\left( {a - b} \right)^3} + 3ab\left( {a - b} \right)\\\;\;\;\;\;\;\;\;\;\; = \left( {a - b} \right)\left( {...} \right)\\\;\;\;\;\;\;\;\;\;\; = ...\end{array}\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng quy tắc chuyển vế, các tính chất của phép toán, hằng đẳng thức: Bình phương của một tổng, một hiệu.

Answer - Lời giải/Đáp án

\(\begin{array}{l}{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\\{a^3} + {b^3} = {\left( {a + b} \right)^3} - 3{a^2}b - 3a{b^2}\\\;\;\;\;\;\;\;\;\;\; = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)\\\;\;\;\;\;\;\;\;\;\; = \left( {a + b} \right)\left[ {{{\left( {a + b} \right)}^2} - 3ab} \right]\\\;\;\;\;\;\;\;\;\;\; = \left( {a + b} \right)\left[ {{a^2} + 2ab + {b^2} - 3ab} \right]\\\;\;\;\;\;\;\;\;\;\; = \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\end{array}\) \(\begin{array}{l}{\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\\{a^3} - {b^3} = {\left( {a - b} \right)^3} + 3{a^2}b - 3a{b^2}\\\;\;\;\;\;\;\;\;\;\; = {\left( {a - b} \right)^3} + 3ab\left( {a - b} \right)\\\;\;\;\;\;\;\;\;\;\; = \left( {a - b} \right)\left[ {{{\left( {a - b} \right)}^2} + 3ab} \right]\\\;\;\;\;\;\;\;\;\;\; = \left( {a - b} \right)\left[ {{a^2} - 2ab + {b^2} + 3ab} \right]\\\;\;\;\;\;\;\;\;\;\; = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\end{array}\)


Thực hành 7

Viết các đa thức sau dưới dạng tích:

a) \(8{y^3} + 1\)

b) \({y^3} - 8\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Biến đổi đa thức về dạng tổng, hiệu của hai lập phương rồi áp dụng hằng đẳng thức tổng, hiệu của hai lập phương.

Answer - Lời giải/Đáp án

a) \(8{y^3} + 1 = {\left( {2y} \right)^3} + {1^3} = \left( {2y + 1} \right)\left[ {{{\left( {2y} \right)}^2} - 2y.1 + {1^2}} \right] = \left( {2y + 1} \right)\left( {4{y^2} - 2y + 1} \right)\)

b) \({y^3} - 8 = {y^3} - {2^3} = \left( {y - 2} \right)\left( {{y^2} + 2y + {2^2}} \right) = \left( {y - 2} \right)\left( {{y^2} + 2y + 4} \right)\)


Thực hành 8

Advertisements (Quảng cáo)

Tính:

a) \(\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)\)

b) \(\left( {2x - \dfrac{1}{2}} \right)\left( {4{x^2} + x + \dfrac{1}{4}} \right)\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Biến đổi tích của hai đa thức về dạng vế phải của hằng đẳng thức: Tổng, hiệu của hai lập phương.

Answer - Lời giải/Đáp án

a) \(\left( {x + 1} \right)\left( {{x^2} - x + 1} \right) = \left( {x + 1} \right)\left( {{x^2} - x.1 + {1^2}} \right) = {x^3} + {1^3} = {x^3} + 1\)

b) \(\left( {2x - \dfrac{1}{2}} \right)\left( {4{x^2} + x + \dfrac{1}{4}} \right) = \left( {2x - \dfrac{1}{2}} \right)\left[ {{{\left( {2x} \right)}^2} + 2x.\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2}} \right] = {\left( {2x} \right)^3} - {\left( {\dfrac{1}{2}} \right)^3} = 8{x^3} - \dfrac{1}{8}\)


Vận dụng 4

Từ một khối lập phương có cạnh bằng \(2x + 1\), ta cắt bỏ một khối lập phương có cạnh bằng \(x + 1\) (xem Hình 5). Tính thể tích phần còn lại, viết kết quả dưới dạng đa thức.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng công thức tính thể tích của hình lập phương

Áp dụng hằng đẳng thức: Hiệu của hai lập phương

Answer - Lời giải/Đáp án

Thể tích phần còn lại của khối lập phương là:

\(\begin{array}{l}{\left( {2x + 1} \right)^3} - {\left( {x + 1} \right)^3}\\ = \left[ {\left( {2x + 1} \right) - \left( {x + 1} \right)} \right].\left[ {{{\left( {2x + 1} \right)}^2} + \left( {2x + 1} \right)\left( {x + 1} \right) + {{\left( {x + 1} \right)}^2}} \right]\\ = x.\left[ {4{x^2} + 4x + 1 + 2{x^2} + 2x + x + 1 + {x^2} + 2x + 1} \right]\\ = x.\left( {7{x^2} + 9x + 3} \right)\\ = 7{x^3} + 9{x^2} + 3x\end{array}\)

Advertisements (Quảng cáo)