Trang chủ Lớp 8 SGK Toán 8 - Kết nối tri thức Bài 6.17 trang 14 Toán 8 tập 2 – Kết nối tri...

Bài 6.17 trang 14 Toán 8 tập 2 - Kết nối tri thức: Cho hai phân thức và Rút gọn hai phân thức đã cho...

Rút gọn phân thức bằng cách chia cho mẫu thức chung của cả tử và mẫu của phân thức đó Hướng dẫn trả lời bài 6.17 trang 14 SGK Toán 8 tập 2 - Kết nối tri thức Luyện tập chung trang 13. Cho hai phân thức...

Question - Câu hỏi/Đề bài

Cho hai phân thức \(\frac{{{x^2} + 5{\rm{x}}}}{{(x - 10)({x^2} + 10{\rm{x}} + 25)}}\)và \(\frac{{{x^2} + 10{\rm{x}}}}{{{x^4} - 100{{\rm{x}}^2}}}\)

a) Rút gọn hai phân thức đã cho. Kí hiệu P và Q là hai phân thức nhận được.

b) Quy đồng mẫu thức hai phân thức P và Q.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Rút gọn phân thức bằng cách chia cho mẫu thức chung của cả tử và mẫu của phân thức đó

Answer - Lời giải/Đáp án

a) Ta có:

Advertisements (Quảng cáo)

\(\begin{array}{l}\frac{{{x^2} + 5{\rm{x}}}}{{(x - 10)({x^2} + 10{\rm{x}} + 25)}} = \frac{{x\left( {x + 5} \right)}}{{\left( {x - 10} \right){{\left( {x + 5} \right)}^2}}} = \frac{x}{{\left( {x - 10} \right)\left( {x + 5} \right)}}\left( {x + 5 \ne 0} \right)\\ \Rightarrow P = \frac{x}{{\left( {x - 10} \right)\left( {x + 5} \right)}}\end{array}\)

\(\begin{array}{l}\frac{{{x^2} + 10{\rm{x}}}}{{{x^4} - 100{{\rm{x}}^2}}} = \frac{{x\left( {x + 10} \right)}}{{{x^2}\left( {{x^2} - 100} \right)}} = \frac{{x\left( {x + 10} \right)}}{{{x^2}\left( {x - 10} \right)\left( {x + 10} \right)}} = \frac{1}{{x\left( {x - 10} \right)}}\\ \Rightarrow Q = \frac{1}{{x\left( {x - 10} \right)}}\end{array}\)

b) MTC là: \(x\left( {x - 10} \right)\left( {x + 5} \right)\)

Nhân tử phụ của phân thức P là: x

Nhân tử phụ của phân thức Q là: (x + 5)

Khi đó:

\(P = \frac{x}{{\left( {x - 10} \right)\left( {x + 5} \right)}} = \frac{{x.x}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}} = \frac{{{x^2}}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}}\)

\(Q = \frac{1}{{x\left( {x - 10} \right)}} = \frac{{1.\left( {x + 5} \right)}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}} = \frac{{x + 5}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}}\)

Advertisements (Quảng cáo)