Luyện tập 4
Rút gọn biểu thức: \(P = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - \frac{1}{x} - \frac{1}{y}\)
Nhóm các số có cùng mẫu để thực hiện phép tính
Ta có:
\(\begin{array}{l}P = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - \frac{1}{x} - \frac{1}{y}\\P = \left( {\frac{1}{x} - \frac{1}{x}} \right) + \left( {\frac{1}{y} - \frac{1}{y}} \right) + \frac{1}{z} = 0 + 0 + \frac{1}{z} = \frac{1}{z}\end{array}\)
Luyện tập 5
Đề bài đưa ra: hãy rút gọn biểu thức:
\(P = \frac{x}{{x + 1}} - \left[ {\left( {\frac{1}{{x - 1}} + \frac{x}{{x + 1}}} \right) - \frac{1}{{x - 1}}} \right]\)
Vuông: Không cần tính toán, em thấy ngay kết quả P = 0
Tròn: Làm thế nào mà Vuông thấy ngay được kết quả thế nhỉ?
Thực hiện theo quy tắc cộng, trừ các phân thức đại số
Advertisements (Quảng cáo)
\(\begin{array}{l}P = \frac{x}{{x + 1}} - \left[ {\left( {\frac{1}{{x - 1}} + \frac{x}{{x + 1}}} \right) - \frac{1}{{x - 1}}} \right]\\P = \frac{x}{{x + 1}} - \left[ {\frac{1}{{x - 1}} + \frac{x}{{x + 1}} - \frac{1}{{x - 1}}} \right]\\P = \frac{x}{{x + 1}} - \frac{x}{{x + 1}} = 0\end{array}\)
Vì vuông đã sử dụng phép cộng, phép trừ phân thức đại số.
Vận dụng
Chú Đức lái ô tô từ Hà Nội về quê. Từ nhà chú đến đường cao tốc dài khoảng 20km, xe chạy trong thành phố với vận tốc x(km/h) (x>0). Trên 50km đường cao tốc, xe tăng vận tốc thêm 55km/h. Ra khỏi cao tốc, xe còn phải chạy thêm 15 phút thì về đến quê
a) Viết các phân thức biểu thị thời gian xe chạy trong thành phố và thời gian xe chạy trên đường cao tốc
b) Viết phân thức biểu thị tổng thời gian chú Đức đi từ Hà Nội về quê
Viết phân thức biểu thị theo yêu cầu của đề bài: Thời gian bằng quãng đường chia cho vận tốc
a) Phân thức biểu thị thời gian xe chạy trong thành phố: \({t_1} = \frac{{20}}{x}\) (giờ)
Phân thức biểu thị thời gian xe chạy trên đường cao tốc: \({t_2} = \frac{{50}}{{x + 55}}\) (giờ)
b)Phân thức biểu thị tổng thời gian chú Đức đi từ Hà Nội về quê:
\(\begin{array}{l}{t_1} + {t_2} + \frac{1}{4}\\ = \frac{{20}}{x} + \frac{{50}}{{x + 55}} + \frac{1}{4}\\ = \frac{{80\left( {x + 55} \right) + 200{\rm{x}} + x\left( {x + 55} \right)}}{{4{\rm{x}}\left( {x + 55} \right)}} = \frac{{{x^2} + 335{\rm{x}} + 4400}}{{4{\rm{x}}\left( {x + 55} \right)}}\end{array}\)