Chọn phương án đúng trong mỗi câu sau:
Câu 1 trang 33
Đa thức \(8{x^3} - 27{y^3}\) được viết thành tích của hai đa thức:
A. \(2x + 3y\) và \(4{x^2} - 6xy + 9{y^2}\).
B. \(2x + 3y\) và \(4{x^2} + 6xy + 9{y^2}\).
C. \(2x-3y\) và \(4{x^2} - 6xy + 9{y^2}\).
D. \(2x-3y\) và \(4{x^2} + 6xy + 9{y^2}\).
Sử dụng hằng đẳng thức hiệu hai lập phương: \({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)
Ta có \(8{x^3} - 27{y^3} = \left( {2x - 3y} \right)\left( {4{x^2} + 6xy + 9{y^2}} \right).\)
=> Chọn đáp án D.
Câu 2 trang 33
Đa thức \({x^3} + 8{y^3}\) được viết thành tích của hai đa thức:
A. \(x + 2y\) và \({x^2} + 2xy + 4{y^2}\).
B. \(x + 2y\) và \({x^2} - 2xy + 4{y^2}\).
C. \(x - 2y\) và \({x^2} - 2xy + 4{y^2}\).
D. \(x - 2y\) và \({x^2} + 2xy + 4{y^2}\).
Sử dụng hằng đẳng thức tổng hai lập phương: \({a^3} + {b^3} = (a + b)\left( {{a^2} - ab + {b^2}} \right)\)
Ta có \({x^3} + 8{y^3} = \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right).\)
=> Chọn đáp án B.
Câu 3 trang 33
Advertisements (Quảng cáo)
Biểu thức \(\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right) - \left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)\) được rút gọn thành
A. \( - 16\).
B. \(16\).
C. \(2{x^3}\).
D. \( - 2{x^3}\).
- Sử dụng hằng đẳng thức tổng hai lập phương: \({a^3} + {b^3} = (a + b)\left( {{a^2} - ab + {b^2}} \right)\)
- Sử dụng hằng đẳng thức hiệu hai lập phương: \({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)
Ta có \((x - 2)({x^2} + 2x + 4) - (x + 2)({x^2} - 2x + 4)\)
\(\begin{array}{l} = \left( {{x^3} - {2^3}} \right) - \left( {{x^3} + {2^3}} \right)\\ = {x^3} - 8 - {x^3} - 8 = - 16.\end{array}\)
=> Chọn đáp án A.
Câu 4 trang 33
Khẳng định nào sau đây là đúng?
A. \({A^3} + {B^3} = (A - B)({A^2} + AB + {B^2})\).
B. \({A^3} + {B^3} = (A + B)({A^2} + AB + {B^2})\).
C. \({A^3} - {B^3} = (A - B)({A^2} - AB + {B^2})\).
D. \({A^3} - {B^3} = (A - B)({A^2} + AB + {B^2})\).
- Sử dụng hằng đẳng thức tổng hai lập phương: \({a^3} + {b^3} = (a + b)\left( {{a^2} - ab + {b^2}} \right)\)
- Sử dụng hằng đẳng thức hiệu hai lập phương: \({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)
Khẳng định đúng là \({A^3} - {B^3} = \left( {A - B} \right)\left( {{A^2} + AB + {B^2}} \right).\)
=> Chọn đáp án D.