Câu hỏi/bài tập:
Cho \(x,y,z\) là các số thực tùy ý. Chứng minh:
\(\begin{array}{l}a){x^2} + {y^2} \ge 2xy\\b){x^2} + {y^2} + {z^2} \ge xy + yz + zx\\c)3\left( {{x^2} + {y^2} + {z^2}} \right) \ge {\left( {x + y + z} \right)^2}\end{array}\)
a) Áp dụng tính chất của hằng đẳng thức: \({\left( {x - y} \right)^2} \ge 0\)
b) Cộng vế với vế của 3 bất đẳng thức \({\left( {x - y} \right)^2} \ge 0;{\left( {y - z} \right)^2} \ge 0;{\left( {z - x} \right)^2} \ge 0\).
c) Xét hiệu \(3\left( {{x^2} + {y^2} + {z^2}} \right) - {\left( {x + y + z} \right)^2}\).
a) Do \({\left( {x - y} \right)^2} \ge 0\forall x,y \in R\) nên \({x^2} - 2xy + {y^2} \ge 0\) hay \({x^2} + {y^2} \ge 2xy\).
b) Với \(x,y,z\) là các số thực tùy ý ta có:
Advertisements (Quảng cáo)
\({\left( {x - y} \right)^2} \ge 0;{\left( {y - z} \right)^2} \ge 0;{\left( {z - x} \right)^2} \ge 0\).
Cộng vế với vế của 3 bất đẳng thức trên, ta được:
\({\left( {x - y} \right)^2} + {\left( {y - z} \right)^2} + {\left( {z - x} \right)^2} \ge 0\)
\({x^2} - 2xy + {y^2} + {y^2} - 2yz + {z^2} + {z^2} - 2xz + {x^2} \ge 0\)
\(2\left( {{x^2} + {y^2} + {z^2}} \right) \ge 2\left( {xy + yz + xz} \right)\)
Vậy \({x^2} + {y^2} + {z^2} \ge xy + yz + zx\)
c) Xét hiệu
\(\begin{array}{l}3\left( {{x^2} + {y^2} + {z^2}} \right) - {\left( {x + y + z} \right)^2} = 3{x^2} + 3{y^2} + 3{z^2} - {x^2} - {y^2} - {z^2} - 2xy - 2yz - 2zx\\ = \left( {{x^2} - 2xy + {y^2}} \right) + \left( {{y^2} - 2yz + {z^2}} \right) + \left( {{x^2} - 2zx + {z^2}} \right) = {\left( {x - y} \right)^2} + {\left( {y - z} \right)^2} + {\left( {z - x} \right)^2}\end{array}\)
Do \({\left( {x - y} \right)^2} + {\left( {y - z} \right)^2} + {\left( {z - x} \right)^2} \ge 0\) nên \(3\left( {{x^2} + {y^2} + {z^2}} \right) - {\left( {x + y + z} \right)^2}\)
hay \(3\left( {{x^2} + {y^2} + {z^2}} \right) \ge {\left( {x + y + z} \right)^2}\).