y = ax + b (d)
y = a’x + b’ (d’)
Chứng minh rằng . Câu 26 trang 67 Sách Bài Tập (SBT) Toán 9 Tập 1 - Bài 5. Hệ số góc của đường thẳng y = ax + b
Cho hai đường thẳng
y = ax + b (d)
y = a’x + b’ (d’)
Chứng minh rằng :
Trên cùng một mặt phẳng tọa độ , hai đường thẳng (d) và (d’) vuông góc với nhau khi và chỉ khi a. a’ = 1.
Qua gốc tọa độ , kẻ đường thẳng y = ax // (d) và y = ax // (d’).
*Chứng mình (d) vuông góc với (d’) thì a. a’ = -1
Không mất tính tổng quát, giả sử a > 0
Khi đó góc tạo bởi tia Ox và đường thẳng y = ax là góc nhọn.
Suy ra góc tạo bởi tia Ox và đường thẳng y = a’x là góc tù ( vì các góc tạo bởi
đường thẳng y = ax và đường thẳng y = a’x với tia Ox hơn kém nhau ).
Suy ra: a’ < 0
Advertisements (Quảng cáo)
Mà đường thẳng y = ax đi qua A(1;a), đường thẳng y = a’x đi qua B(1;a’)
nên đoạn AB vuông góc với Ox tại điểm H có hoành độ bằng 1.
Vì \(\left( {\rm{d}} \right) \bot \left( {{\rm{d’}}} \right)\) nên hai đường thẳng y = ax và y = a’x vuông góc với nhau
Suy ra: \(\widehat {AOB} = {90^0}\)
Tam giác vuông AOB có \(OH \bot AB\). Theo hệ thức lượng trong tam giác vuông ta có : \(O{H^2} = HA.HB\)
Hay: \(a.\left| {a’} \right| = 1 \Leftrightarrow a.\left( { - a’} \right) = 1 \Leftrightarrow a.a’ = - 1\)
Vậy nếu (d) vuông góc với (d’) thì a.a’ = -1
*Chứng minh \9a.a’ = - 1\) thì (d) vuông góc với (d’)
Ta có : \(a.a’ = - 1 \Leftrightarrow a.\left| {a’} \right| = 1\) hay \(HA.HB = O{H^2}\)
Suy ra: \({{HA} \over {OH}} = {{OH} \over {HB}} \Rightarrow \widehat {OHA} = \widehat {OHB} = {90^0}\)
Suy ra: \(\Delta OHA\) đồng dạng \(\Delta BHO \Rightarrow \widehat {AOH} = \widehat {OBH}\)
Mà \(\widehat {OBH} = \widehat {BOH} = {90^0} \Rightarrow \widehat {AOH} = \widehat {BOH} = {90^0}\)
Suy ra \(OA \bot OB\) hay hai đường thẳng y = ax và y = a’x vuông góc với nhau hay \(\left( {\rm{d}} \right) \bot \left( {{\rm{d’}}} \right)\).