Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 27 trang 68 SBT Toán 9 Tập 1: Vẽ trên cùng...

Câu 27 trang 68 SBT Toán 9 Tập 1: Vẽ trên cùng một mặt phẳng tọa độ đồ thị của các...

a) Vẽ trên cùng một mặt phẳng tọa độ đồ thị của các hàm số sau. Câu 27 trang 68 Sách Bài Tập (SBT) Toán 9 Tập 1 - Bài 5. Hệ số góc của đường thẳng y = ax + b

a)      Vẽ trên cùng một mặt phẳng tọa độ đồ thị của các hàm số sau:

                                        y = x         (1)

                                        y = 0,5x           (2)

b)      Đường thẳng (d) song song với trục Ox và cắt trục tung Oy tại điểm C

có tung độ bằng 2, theo thứ tự cắt các đường thẳng (1) và (2) tại D và E.

Tìm tọa độ của các điểm D, E . Tính chu vi và diện tích của tam giáo ODE.

a) * Vẽ đồ thị hàm số y = x

Cho x = 0 thì y = 0. Ta có : O(0;0)

Cho x = 1 thì y = 1. Ta có: A(1;1)

Đồ thị hàm số y = x đi qua O và A.

* Vẽ đồ thị hàm số y = 0,5x

        Cho x = 0 thì y = 0.Ta có : O(0;0)

        Cho x = 2 thì y = 1. Ta có : B(2;1)

        Đồ thị hàm số y = 0,5x đi qua O và B .

b) Qua điểm C trên trục tung có tung độ bằng 2, kẻ đường thẳng song song với Ox

cắt đồ thị hàm số y = x tại D , cắt đồ thị hàm số y = 0,5x tại E.

Advertisements (Quảng cáo)

Điểm D có tung độ bằng 2.

Thay giá trị y = 2 vào hàm số y = x ta được x = 2

Vậy điểm D(2;2)

Điểm E có tung độ bằng 2.

Thay giá trị y = 2 vào hàm số y = 0,5x ta được x = 4.

Vậy điểm E(4;2)

Gọi D’ và E’ lần lượt là hình chiều của D và E trên Ox.

Ta có: OD’ = 2, OE’ = 4.

Áp dụng định lý Pi-ta-go vào tam giác vuông ODD’, ta có:

\(O{D^2} = OD{‘^2} + {\rm{DD}}{‘^2} = {2^2} + {2^2} = 8\)

Suy ra: \(OD = \sqrt 8  = 2\sqrt 2 \)

Áp dụng định lý Pi-ta-go vào tam giác vuông OEE’, ta có:

\(O{E^2} = OE{‘^2}{\rm{ + EE}}{{\rm{‘}}^2} = {4^2} + {2^2} = 20\)

Suy ra: \(OE = \sqrt {20}  = 2\sqrt 5 \)

Lại có: \(DE = CE - CD = 4 - 2 = 2\)

Chu vi tam giác ODE bằng:

\(\eqalign{
& OD + DE + EO \cr
& = 2\sqrt 2 + 2 + 2\sqrt 2 \cr
& = 2\left( {\sqrt 2 + 1 + \sqrt 5 } \right) \cr} \)                                                                 

Diện tích tam giác ODE bằng: \({1 \over 2}DE.OC = {1 \over 2}.2.2 = 2\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)