Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 9 trang 100 SBT Toán 9 Tập 2: Chứng minh rằng...

Câu 9 trang 100 SBT Toán 9 Tập 2: Chứng minh rằng cung lớn AB có sđ cung AB = sđ cung AC = sđ cung...

Chứng minh rằng cung lớn AB có sđ cung AB = sđ cung AC = sđ cung CB. Câu 9 trang 100 Sách Bài Tập (SBT) Toán 9 Tập 2 - Bài 1: Góc ở tâm. Số đo cung

Cho C là một điểm nằm trên cung lớn AB của đường tròn (O). Điểm C của cung lớn AB thành hai cung AC và CB. Chứng minh rằng cung lớn AB có sđ cung AB = sđ cung AC = sđ cung CB.

Hướng dẫn: Xét 3 trường hợp:

a) Tia OC nằm trong góc đối đỉnh của góc ở tâm AOB.

b) Tia OC trùng với tia đối của một cạnh của góc ở tâm AOB

c) Tia OC nằm trong một góc kề bù với góc ở tâm AOB

a) Trường hợp tia OC nằm trong góc đối đỉnh với \(\widehat {AOB}\)

Kẻ đường kính CD

Suy ra: OD nằm giữa OA và OB nên điểm D nằm trên cung nhỏ cung AB

\( \Rightarrow \) sđ cung AD (nhỏ) + sđ cung BD (nhỏ) = sđ cung AB (nhỏ)              (1)

Vì OA nằm giữa OC và OD nên điểm A nằm trên cung nửa đường tròn CD.

\( \Rightarrow \) sđ cung AD (nhỏ)­ + sđ cung AC (nhỏ) = 1800           (2)

Vì OB nằm giữa OC và OD nên điểm B nằm trên cung nửa đường tròn CD.

\( \Rightarrow \) sđ cung BD (nhỏ) + sđ cung BC (nhỏ) = 1800                        (3)

Cộng từng vế (2) và (3):

sđ cung AD (nhỏ) + sđ cung AC (nhỏ) + sđ cung BD (nhỏ) + sđ cung BC (nhỏ) = 3600            (4)

Từ (1) và (4) suy ra: sđ cung AC (nhỏ) + sđ cung BC (nhỏ) + sđ cung AB (nhỏ) = 3600

\( \Rightarrow \) sđ cung AC (nhỏ) + sđ cung BC (nhỏ) = 3600 - sđ cung AB (nhỏ)

Mà 3600 - sđ cung AB (nhỏ) = sđ cung AD (lớn)

Vậy với cung lớn AB ta có: sđ cung AB = sđ cung AC + sđ cung BC

Advertisements (Quảng cáo)

b)

Trường hợp tia OC trùng với tia đối của một cạnh của góc ở tâm AOB ta có:

\(\widehat {AOB} + \widehat {BOC} = {180^0}\); $\widehat {AOC} = {180^0}\)

\( \Rightarrow \widehat {AOB} + \widehat {BOC} + \widehat {AOC} = {360^0}\)

\( \Rightarrow \widehat {AOC} + \widehat {BOC} = {360^0} - \widehat {AOB}\)

Suy ra: sđ cung AB + sđ cung BC (nhỏ) = 3600 - sđ cung AB (nhỏ)

Vậy với cung lớn AB ta có: sđ cung AB = sđ cung AC (nhỏ) + sđ cung BC

c)

Trong hợp tia OC nằm trong góc kề bù với góc ở tâm AOB, kẻ đường kính AE.

Theo trường hợp b ta có:

sđ cung AB (lớn) = sđ cung AE (nhỏ) + sđ cung BE (nhỏ)

Ta xét trường hợp C nằm trên cung nhỏ EB:

sđ cung EB (nhỏ) = sđ cung EC (nhỏ) + sđ cung CB (nhỏ)

\( \Rightarrow \) sđ cung AB (lớn) = sđ cung AE + sđ cung EC (nhỏ) + sđ cung CB (nhỏ)

Theo kết quả trường hợp b ta có:

sđ cung AE + sđ cung EC (nhỏ)= sđ cung AC (lớn)

Vậy với cung AB lớn ta có: sđ cung AB = sđ cung AC + sđ cung CB

Trong trường hợp OC nằm trên góc đối với góc ở tâm \(\widehat {BOE}\) chứng minh tương tự.

Trong trường hợp OC nằm trên góc đối đỉnh với góc ở tâm \(\widehat {AOB}\) chứng minh ở trường hợp a.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)