Trang chủ Lớp 9 SGK Toán 9 - Cánh diều Giải mục 3 trang 58 Toán 9 tập 2 – Cánh diều:...

Giải mục 3 trang 58 Toán 9 tập 2 - Cánh diều: Trong bài toán ở phần mở đầu, sau bao lâu thì quả bóng chạm đất?...

Giải phương trình 0,07x(x+6,14)2+4,64=0.. Giải và trình bày phương pháp giải mục 3 trang 58 SGK Toán 9 tập 2 - Cánh diều - Bài 2. Phương trình bậc hai một ẩn. Trong bài toán ở phần mở đầu, sau bao lâu thì quả bóng chạm đất? Giả sử khi ném một quả bóng vào rổ...

Question - Câu hỏi/Đề bài

Trả lời câu hỏi Luyện tập 5 trang 58

Trong bài toán ở phần mở đầu, sau bao lâu thì quả bóng chạm đất?

Giả sử khi ném một quả bóng vào rổ, độ cao y (feet) của quả bóng và thời gian x (giây) liên hệ với nhau bởi công thức y=0,07x(x+6,14)2+4,64

Khi quả bóng chạm đất, ta có thời gian x thỏa mãn phương trình 0,07x(x+6,14)2+4,64=0

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Giải phương trình 0,07x(x+6,14)2+4,64=0.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Gọi thời gian quả bóng chạm đất là x(x>0), đơn vị: giây.

Theo bài ra, ta có phương trình:

0,07x(x+6,14)2+4,64=0

\begin{array}{l} - 0,07({x^2} + 12,28x + 6,{14^2}) + 4,64 = 0\\ - 0,07{x^2} - 0,8596x + 2,001028 = 0\\0,07{x^2} + 0,8596x - 2,001028 = 0\\\Delta ‘ = 0,{4298^2} - 0,07.\left( { - 2,001028} \right) = 0,3248 > 0\end{array}

Do \Delta ‘ > 0 nên phương trình có 2 nghiệm phân biệt là:

\begin{array}{l}{x_1} = \frac{{ - 0,4298 - \sqrt {0,3248} }}{{0,07}} \approx - 14,28 < 0\left( L \right)\\{x_2} = \frac{{ - 0,4298 + \sqrt {0,3248} }}{{0,07}} \approx 2 > 0\left( {TM} \right)\end{array}

Vậy thời gian quả bóng chạm đất khoảng 2 giây.

Advertisements (Quảng cáo)