Luyện tập4
Trả lời câu hỏi Luyện tập 4 trang 85
Tìm độ dài cạnh góc vuông \(AC\) và số đo các góc nhọn \(B,C\) của tam giác vuông \(ABC\), biết cạnh góc vuông \(AB = 5cm\) và cạnh huyền \(BC = 13cm\).
Dựa vào các mối liên hệ giữa tỉ số lượng giác và các cạnh để giải bài toán.
Xét tam giác \(ABC\) vuông tại \(A\), ta có:
+) \(B{C^2} = A{B^2} + A{C^2}\) (theo định lý Pythagore), suy ra \({13^2} = {5^2} + A{C^2}\) hay \(AC = 12\left( {cm} \right)\).
+) \(\cos B = \frac{{AB}}{{BC}} = \frac{5}{{13}}\) suy ra \(\widehat B \approx 67^\circ \).
+) \(\widehat B + \widehat C = 90^\circ \) (tổng hai góc nhọn của tam giác vuông), suy ra \(\widehat C = 90^\circ - \widehat B \approx 90^\circ - 67^\circ \approx 23^\circ \).
Luyện tập5
Trả lời câu hỏi Luyện tập 5 trang 85
Tìm số đo góc nhọn \(C\) và độ dài cạnh góc vuông \(AB\), cạnh huyền \(BC\) của tam giác vuông \(ABC\), biết cạnh góc vuông \(AC = 7cm\) và \(\widehat B = 55^\circ \).
Dựa vào các mối liên hệ giữa tỉ số lượng giác và các cạnh để giải bài toán.
Advertisements (Quảng cáo)
Xét tam giác \(ABC\) vuông tại \(A\), ta có:
+) \(\widehat B + \widehat C = 90^\circ \) (tổng hai góc nhọn của tam giác vuông), suy ra \(\widehat C = 90^\circ - \widehat B = 90^\circ - 55^\circ = 35^\circ \).
+) \(AB = AC.\tan C = 7.\tan 35^\circ \approx 4,9\left( {cm} \right)\).
+) \(BC = AC.\sin B = 7.\sin 55^\circ \approx 5,7\left( {cm} \right)\).
Luyện tập6
Trả lời câu hỏi Luyện tập 6 trang 86
Cho hình chữ nhật \(ABCD\) thỏa mãn \(AC = 6cm,\widehat {BAC} = 47^\circ \). Tính độ dài các đoạn thẳng \(AB,AD\).
Dựa vào các mối liên hệ giữa tỉ số lượng giác và các cạnh để giải bài toán.
Xét tam giác \(ABC\) vuông tại \(B\) có:
+) \(AB = AC.\cos \widehat {BAC} = 6.\cos 47^\circ \approx 4,1\left( {cm} \right)\).
+) \(BC = AC.\sin \widehat {BAC} = 6.\sin 47^\circ \approx 4,4\left( {cm} \right)\).
Do \(ABCD\) là hình chữ nhật nên \(BC = AD\) (tính chất hình chữ nhật) suy ra \(AD \approx 4,4\left( {cm} \right)\).