Hoạt động1
Trả lời câu hỏi Hoạt động 1 trang 46
Hoàn thành bảng sau vào vở.
Từ đó, nhận xét gì về căn bậc hai số học của bình phương của một số?
Đưa số vào trong căn rồi bình phương.
Căn bậc hai số học của bình phương của một số là 1 số không âm.
Thực hành1
Trả lời câu hỏi Thực hành 1 trang 47
Tính
a) \(\sqrt {{{\left( { - 0,4} \right)}^2}} \)
b) \( - \sqrt {{{\left( { - \frac{4}{9}} \right)}^2}} \)
c) \( - 2\sqrt {{3^2}} + {\left( { - \sqrt 6 } \right)^2}\)
Dựa vào tính chất: Với mọi số thực a, ta có \(\sqrt {{a^2}} = \left| a \right|\).
Advertisements (Quảng cáo)
a) \(\sqrt {{{\left( { - 0,4} \right)}^2}} = \left| { - 0,4} \right| = 0,4\)
b) \( - \sqrt {{{\left( { - \frac{4}{9}} \right)}^2}} = - \left| { - \frac{4}{9}} \right| = - \frac{4}{9}\)
c) \( - 2\sqrt {{3^2}} + {\left( { - \sqrt 6 } \right)^2} = - 2.\left| 3 \right| + 6 = - 2.3 + 6 = 0\)
Thực hành2
Trả lời câu hỏi Thực hành 2 trang 47
Rút gọn các biểu thức sau:
a) \(\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} \)
b) \(\sqrt {{a^2}} + \sqrt {{{( - 3a)}^2}} \) với a > 0.
Dựa vào tính chất: Với biểu thức A bất kì, ta có \(\sqrt {{A^2}} = \left| A \right|\), nghĩa là:
\(\sqrt {{A^2}} = A\) khi \(A \ge 0\)
\(\sqrt {{A^2}} = - A\) khi \(A < 0\)
a) \(\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} = \left| {2 - \sqrt 5 } \right| = \sqrt 5 - 2\)
(Vì \(2 - \sqrt 5 \) < 0)
b) \(\sqrt {{a^2}} + \sqrt {{{( - 3a)}^2}} \) với a > 0.
\(\sqrt {{a^2}} + \sqrt {{{( - 3a)}^2}} = \left| a \right| + \left| { - 3a} \right| = a + 3a = 4a\).