Trang chủ Lớp 9 SGK Toán 9 - Chân trời sáng tạo Giải mục 1 trang 6, 7 Toán 9 Chân trời sáng tạo...

Giải mục 1 trang 6, 7 Toán 9 Chân trời sáng tạo tập 1: Các giá trị \(x = - 3, \, x = \frac{5}{2}\) có phải là nghiệm của phương trình không?...

Giải và trình bày phương pháp giải HĐ1, TH1, TH2, VD1 mục 1 trang 6, 7 SGK Toán 9 tập 1 - Chân trời sáng tạo Bài 1. Phương trình quy về phương trình bậc nhất một ẩn. Cho phương trình (left( {x + 3} right)left( {2x - 5} right) = 0). a) Các giá trị (x = - 3, x = frac{5}{2}) có phải là nghiệm của phương trình không? Tại sao?...

Hoạt động1

Trả lời câu hỏi Hoạt động 1 trang 6

Cho phương trình \(\left( {x + 3} \right)\left( {2x - 5} \right) = 0\).

a) Các giá trị \(x = - 3,\,x = \frac{5}{2}\) có phải là nghiệm của phương trình không? Tại sao?

b) Nếu số \({x_0}\) khác \( - 3\) và khác \(\frac{5}{2}\) thì \({x_0}\) có phải là nghiệm của phương trình không? Tại sao?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Thay các giá trị của \(x\) vào phương trình đã cho để kiểm tra xem chúng có phải là nghiệm của phương trình hay không?

Answer - Lời giải/Đáp án

a) Với \(x = - 3\), ta có: \(\left( {x + 3} \right)\left( {2x - 5} \right) = \left( { - 3 + 3} \right)\left( {2x - 5} \right) = 0.\left( {2x - 5} \right) = 0\).

Với \(x = \frac{5}{2}\), ta có: \(\left( {x + 3} \right)\left( {2x - 5} \right) = \left( {x + 3} \right)\left( {2.\frac{5}{2} - 5} \right) = \left( {x + 3} \right).0 = 0\).

Vậy phương trình đã cho có hai nghiệm \(x = - 3\) và \(x = \frac{5}{2}\).

b) Nếu số \({x_0}\) khác -3 và khác \(\frac{5}{2}\) thì \({x_0}\) không phải là nghiệm của phương trình.


Thực hành1

Trả lời câu hỏi Thực hành 1 trang 7

Giải các phương trình:

a) \(\left( {x - 7} \right)\left( {5x + 4} \right) = 0\);

b) \(\left( {2x + 9} \right)\left( {\frac{2}{3}x - 5} \right) = 0\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Để giải phương trình \(\left( {{a_1}x + {b_1}} \right)\left( {{a_2}x + {b_2}} \right) = 0\), ta giải hai phương trình \({a_1}x + {b_1} = 0\) và \({a_2}x + {b_2} = 0\), rồi lấy tất cả các nghiệm của chúng.

Answer - Lời giải/Đáp án

a) Ta có: \(\left( {x - 7} \right)\left( {5x + 4} \right) = 0\)

\(x - 7 = 0\) hoặc \(5x + 4 = 0\)

\(x = 7\) hoặc \(x = \frac{{ - 4}}{5}\).

Vậy phương trình đã cho có hai nghiệm \(x = 7\) và \(x = \frac{{ - 4}}{5}\).

b) Ta có: \(\left( {2x + 9} \right)\left( {\frac{2}{3}x - 5} \right) = 0\)

\(2x + 9 = 0\) hoặc \(\frac{2}{3}x - 5 = 0\)

\(2x = - 9\) hoặc \(\frac{2}{3}x = 5\)

\(x = - \frac{{9}}{2}\) hoặc \(x = \frac{{15}}{2}\).

Vậy phương trình đã cho có hai nghiệm \(x = - \frac{{9}}{2}\) và \(x = \frac{{15}}{2}\).


Thực hành2

Trả lời câu hỏi Thực hành 2 trang 7

Advertisements (Quảng cáo)

Giải các phương trình:

a) \(2x\left( {x + 6} \right) + 5\left( {x + 6} \right) = 0\);

b) \(x\left( {3x + 5} \right) - 6x - 10 = 0\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Để giải phương trình \(\left( {{a_1}x + {b_1}} \right)\left( {{a_2}x + {b_2}} \right) = 0\), ta giải hai phương trình \({a_1}x + {b_1} = 0\) và \({a_2}x + {b_2} = 0\), rồi lấy tất cả các nghiệm của chúng.

Answer - Lời giải/Đáp án

a) Ta có: \(2x\left( {x + 6} \right) + 5\left( {x + 6} \right) = 0\)

\(\left( {x + 6} \right)\left( {2x + 5} \right) = 0\)

\(x + 6 = 0\) hoặc \(2x + 5 = 0\)

\(x = - 6\) hoặc \(x = \frac{{ - 5}}{2}\).

Vậy phương trình đã cho có hai nghiệm \(x = - 6\) và \(x = \frac{{ - 5}}{2}\).

b) Ta có: \(x\left( {3x + 5} \right) - 6x - 10 = 0\)

\(x\left( {3x + 5} \right) - 2\left( {3x + 5} \right) = 0\)

\(\left( {3x + 5} \right)\left( {x - 2} \right) = 0\)

\(3x + 5 = 0\) hoặc \(x - 2 = 0\)

\(x = \frac{{ - 5}}{3}\) hoặc \(x = 2\).

Vậy phương trình đã cho có hai nghiệm \(x = \frac{{ - 5}}{3}\) và \(x = 2\).


Vận dụng1

Trả lời câu hỏi Vận dụng 1 trang 7

Độ cao \(h\) (mét) của một quả bóng gôn sau khi được đánh \(t\) giây được cho bởi công thức \(h = t\left( {20 - 5t} \right)\). Có thể tính được thời gian bay của quả bóng kể từ khi được đánh đến khi chạm đất không?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Để giải phương trình \(\left( {{a_1}x + {b_1}} \right)\left( {{a_2}x + {b_2}} \right) = 0\), ta giải hai phương trình \({a_1}x + {b_1} = 0\) và \({a_2}x + {b_2} = 0\), rồi lấy tất cả các nghiệm của chúng.

Answer - Lời giải/Đáp án

Khi quả bóng gôn chạm đất thì độ cao của nó so với mặt đất là \(0\) (mét) nên \(h = 0\).

Khi đó ta có: \(0 = t\left( {20 - 5t} \right)\)

\(t = 0\) hoặc \(20 - 5t = 0\)

\(t = 0\) hoặc \(5t = 20\)

\(t = 0\) hoặc \(t = 4\).

Vì quả bóng gôn đã được đánh đi và chạm đất nên \(t \ne 0\) suy ra \(t = 4\) thỏa mãn đề bài.

Vậy thời gian bay của quả bóng kể từ khi được đánh đến khi chạm đất là \(4\) giây.

Advertisements (Quảng cáo)