Hoạt động1
Trả lời câu hỏi Hoạt động 1 trang 51
a) Tìm căn bậc hai số học của 4.
b) Xét số đối của căn bậc hai số học của 4. Tính bình phương của số này và so sánh kết quả với 4.
Dựa vào kiến thức đã học về căn bậc hai số
a) Căn bậc hai số học của 4 là 2.
b) Số đối của căn bậc hai số học của 4 là \( - 2\).
Bình phương của \( - 2\) là: \({\left( { - 2} \right)^2} = 4\).
Luyện tập1
Trả lời câu hỏi Luyện tập 1 trang 51
Tìm các căn bậc hai của mỗi số sau:
a) 16;
b) \(\frac{9}{{25}}\);
c) 0,36;
d) 6
Advertisements (Quảng cáo)
Dựa vào định nghĩa căn bậc hai để làm bài.
a) Số \(16\) có căn bậc hai là \(\sqrt {16} = 4\) và \( - \sqrt {16} = - 4\).
b) Số \(\frac{9}{{25}}\) có căn bậc hai là \(\sqrt {\frac{9}{{25}}} = \frac{3}{5}\) và \( - \sqrt {\frac{9}{{25}}} = - \frac{3}{5}\).
c) Số \(0,36\) có căn bậc hai là \(\sqrt {0,36} = 0,6\) và \( - \sqrt {0,36} = - 0,6\).
d) Số 6 có căn bậc hai là \(\sqrt 6 \) và \( - \sqrt 6 \).
Luyện tập2
Trả lời câu hỏi Luyện tập 2 trang 52
So sánh:
a) 2 và \(\sqrt 5 \);
b) 7 và \(\sqrt {48} \).
Dựa vào bình phương của hai vế để so sánh.
a) Vì \(4 < 5\) nên \(\sqrt 4 < \sqrt 5 \). Vậy \(2 < \sqrt 5 \).
b) Vì \(49 > 48\) nên \(\sqrt {49} > \sqrt {48} \). Vậy \(7 > \sqrt {48} \).