Không thực hiện phép tính, hãy chứng minh:
a) \(2.\left( { - 7} \right) + 2023 < 2.\left( { - 1} \right) + 2023;\)
b) \(\left( { - 3} \right).\left( { - 8} \right) + 1975 > \left( { - 3} \right).\left( { - 7} \right) + 1975.\)
Áp dụng quy tắc:
- Cộng cả hai vế của bất đẳng thức với một số ta được bất đẳng thức cùng chiều với bất đẳng thức đã cho;
- Nhân cả hai vế của bất đẳng thức với cùng 1 số dương ta được một bất đẳng thức cùng chiều với bất đẳng thức đã cho;
Advertisements (Quảng cáo)
- Nhân cả hai vế của bất đẳng thức với một số âm thì ta được một bất đẳng thức ngược chiều với bất đẳng thức đã cho.
a) \(2.\left( { - 7} \right) + 2023 < 2.\left( { - 1} \right) + 2023;\)
Ta có \( - 7 < - 1\) nên \(2.\left( { - 7} \right) < 2.\left( { - 1} \right)\) (Nhân cả hai vế với số dương 2)
Suy ra \(2.\left( { - 7} \right) + 2023 < 2.\left( { - 1} \right) + 2023\) (cộng cả hai vế với 2023).
b) \(\left( { - 3} \right).\left( { - 8} \right) + 1975 > \left( { - 3} \right).\left( { - 7} \right) + 1975.\)
Ta có \( - 8 < - 7\) nên \(\left( { - 3} \right).\left( { - 8} \right) > \left( { - 3} \right).\left( { - 7} \right)\) (Nhân cả hai vế với số -3)
Suy ra \(\left( { - 3} \right).\left( { - 8} \right) + 1975 > \left( { - 3} \right).\left( { - 7} \right) + 1975.\) (cộng cả hai vế với 1975).