Trang chủ Lớp 9 Toán lớp 9 (sách cũ) Bài 36 trang 24 sgk Toán 9 tập 2, Điểm số trung...

Bài 36 trang 24 sgk Toán 9 tập 2, Điểm số trung bình của một vận động viên bắn súng sau...

Điểm số trung bình của một vận động viên bắn súng sau. Bài 36 trang 24 sgk Toán 9 tập 2 - Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)

36. Điểm số trung bình của một vận động viên bắn súng sau 100 lần bắn là 8,69 điểm. Kết quả cụ thể được ghi trong bảng sau, trong đó có hai ô bi mờ không đọc được (đánh dấu *):

Điểm số của mỗi lần bắn

10

9

8

7

6

Số lần bắn

25

42

*

Advertisements (Quảng cáo)

15

*

Em hãy tìm lại các số trong hai ô đó.

Gọi số thứ nhất bị mờ là \(x\), số thứ hai bị mờ là \(y\). Điều kiện \(x > 0, y > 0\).

Số lần bắn là 100 nên ta có: \(25+42+x+15+y=100\)

Điểm số trung bình của một vận động viên bắn súng sau 100 lần bắn là 8,69 điểm nên ta có:

\(10.25 + 9 . 42 + 8.x + 7.15 + 6.y = 100.8,69\)

Ta có hệ phương trình: \(\left\{\begin{matrix} 25 + 42 + x + 15 + y = 100 & & \\ 10.25 + 9 . 42 + 8.x + 7.15 + 6.y = 100.8,69& & \end{matrix}\right.\)

hay \(\left\{\begin{matrix} x + y = 18 & & \\ 8.x + 6.y = 136& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x = 14 & & \\ y = 4& & \end{matrix}\right.\)

Vậy số thứ nhất bị mờ là 14, số thứ hai bị mờ là 4.

Bạn đang xem bài tập, chương trình học môn Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)