Trang chủ Lớp 9 Toán lớp 9 (sách cũ) Bài 38 trang 24 sgk Toán 9 tập 2, Nếu hai vòi...

Bài 38 trang 24 sgk Toán 9 tập 2, Nếu hai vòi nước cùng chảy vào một bể cạn...

Nếu hai vòi nước cùng chảy vào một bể cạn. Bài 38 trang 24 sgk Toán 9 tập 2 - Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)

38. Nếu hai vòi nước cùng chảy vào một bể cạn (không có nước) thì bể sẽ đầy trong 1 giờ 20 phút. Nếu mở vòi thứ nhất trong 10 phút và vòi thứ hai trong 12 phút thì chỉ được \(\frac{2}{15}\) bể nước. Hỏi nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đầy bể là bao nhiêu ?

Giả sử khi chảy một mình thì vòi thứ nhất chảy đầy bể trong \(x\) phút, vòi thứ hai trong \(y\) phút.

Điều kiện\(x > 0, y > 0\).

Ta có 1 giờ 20 phút = 80 phút.

Trong 1 phút vòi thứ nhất chảy được \(\frac{1}{x}\) bể, vòi thứ hai chảy được \(\frac{1}{y}\) bể, cả hai vòi cùng chảy được \(\frac{1}{80}\) bể nên ta được: \(\frac{1}{x}\) + \(\frac{1}{y}\) = \(\frac{1}{80}\).

Advertisements (Quảng cáo)

Trong 10 phút vòi thứ nhất chảy được \(\frac{10}{x}\) bể, trong 12 phút vòi thứ hai chảy được \(\frac{12}{y}\) bể thì được \(\frac{2}{15}\) bể, ta được:

\(\frac{10}{x}\) + \(\frac{12}{y}\) = \(\frac{2}{15}\)

Ta có hệ phương trình: \(\left\{\begin{matrix} \frac{1}{x}+ \frac{1}{y} = \frac{1}{80}& & \\ \frac{10}{x} + \frac{12}{y} = \frac{2}{15} & & \end{matrix}\right.\)

Giải ra ta được \(x = 120, y = 240\).

Vậy nếu chảy một mình để đầy bể vòi thứ nhất chảy trong 120 phút (2 giờ), vòi thứ hai 240 phút (4 giờ).

Bạn đang xem bài tập, chương trình học môn Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)