Trang chủ Lớp 9 Toán lớp 9 (sách cũ) Bài 95 trang 105 SGK Toán 9 tập 2, Các đường cao...

Bài 95 trang 105 SGK Toán 9 tập 2, Các đường cao hạ từ A và B của tam giác ABC cắt nhau tại H (góc C khác 90o) và cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại D và E. Chứng...

Các đường cao hạ từ A và B của tam giác ABC cắt nhau tại H (góc C khác 90o) và cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại D và E. Chứng minh rằng. Bài 95 trang 105 SGK Toán 9 tập 2 - Ôn tập Chương III – Góc với đường tròn

Bài 95. Các đường cao hạ từ \(A\) và \(B\) của tam giác \(ABC\) cắt nhau tại \(H\) (góc \(C\) khác \(90^0\)) và cắt đường tròn ngoại tiếp tam giác \(ABC\) lần lượt tại \(D\) và \(E\). Chứng minh rằng:

a) \(CD = CE\) ;     b) \(ΔBHD\) cân ;     c) \(CD = CH\).

Ta có: \(\widehat {A{\rm{D}}B} = \widehat {A{\rm{E}}B}\) (cùng chắn cung \(AB\))

 \( \Rightarrow \widehat {CB{\rm{D}}} = \widehat {CA{\rm{E}}}\) (cùng phụ với hai góc bằng nhau)

⇒ \(sđ\overparen{CD}\)= \(sđ\overparen{CE}\)

Advertisements (Quảng cáo)

Suy ra \(CD = CE\)

b) Ta có \(\widehat {EBC}\) và \(\widehat {CB{\rm{D}}}\) là góc nội tiếp trong đường tròn \(O\) nên :

 \(\widehat {EBC} = {1 \over 2} sđ\overparen{CE}\) và \(\widehat {CB{\rm{D}}} = {1 \over 2}sđ\overparen{CD}\) 

Mà \(sđ\overparen{CD}\)= \(sđ\overparen{CE}\)

nên \(\widehat {EBC} = \widehat {CB{\rm{D}}}\)

Vậy \(∆BHD\) cân tại \(B\)

c) Vì \(∆BHD\) cân và \(BK\) là đường cao cũng là đường trung trực của \(HD\). Điểm \(C\) nằm trên đường trung trực của \(HD\) nên \(CH = CD\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)