Trang chủ Lớp 9 Toán lớp 9 (sách cũ) Bài 96 trang 105 SGK Toán 9 tập 2, Cho tam giác...

Bài 96 trang 105 SGK Toán 9 tập 2, Cho tam giác ABC nội tiếp đường tròn (O) và tia phân giác của góc A cắt đường tròn tại M. Vẽ đường cao AH. Chứng minh rằng:...

Cho tam giác ABC nội tiếp đường tròn (O) và tia phân giác của góc A cắt đường tròn tại M. Vẽ đường cao AH. Chứng minh rằng. Bài 96 trang 105 SGK Toán 9 tập 2 - Ôn tập Chương III – Góc với đường tròn

Bài 96. Cho tam giác \(ABC\) nội tiếp đường tròn \((O)\) và tia phân giác của góc \(A\) cắt đường tròn tại \(M\). Vẽ đường cao \(AH\). Chứng minh rằng:

a) \(OM\) đi qua trung điểm của dây \(BC\).

b) \(AM\) là tia phân giác của góc \(OAH\).

a) Vì \(AM\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAM} = \widehat {MAC}\)  

Mà \(\widehat {BAM}\) và \(\widehat {MAC}\) đều là góc nội tiếp của \((O)\) nên 

\(\overparen{BM}\)=\(\overparen{MC}\)

⇒ \(M\) là điểm chính giữa cung \(BC\)

Vậy \(OM \bot BC\) và \(OM\) đi qua trung điểm của \(BC\)

b) Ta có : \(OM \bot BC\) và \(AH\bot BC\) nên \(AH//OM\)

\( \Rightarrow \widehat {HAM} = \widehat {AM{\rm{O}}}\)  (so le trong)  (1)

Mà \(∆OAM\) cân tại \(O\) nên \(\widehat {AM{\rm{O}}} = \widehat {MAO}\)  (2)

Từ (1) và (2) suy ra: \(\widehat {HA{\rm{M}}} = \widehat {MAO}\) 

Vậy \(AM\) là đường phân giác của góc \(OAH\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: