Trang chủ Lớp 9 Vở thực hành Toán 9 (Kết nối tri thức) Bài 1 trang 122 vở thực hành Toán 9 tập 2: Cho...

Bài 1 trang 122 vở thực hành Toán 9 tập 2: Cho một hình trụ có đường kính của đáy bằng với chiều cao và có thể tích bằng 2π \;cm^3...

Từ công thức V=πR2h ta tính được R theo h. + Tính thể tích của hình trụ theo h. Gợi ý giải Giải bài 1 trang 122 vở thực hành Toán 9 tập 2 - Luyện tập chung trang 122 . Cho một hình trụ có đường kính của đáy bằng với chiều cao và có thể tích bằng (2pi ;c{m^3}).

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Cho một hình trụ có đường kính của đáy bằng với chiều cao và có thể tích bằng 2πcm3.

a) Tính chiều cao của hình trụ.

b) Diện tích toàn phần của hình trụ bằng tổng diện tích xung quanh và diện tích hai đáy trụ. Tính diện tích toàn phần của hình trụ trên.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) + Từ công thức V=πR2h ta tính được R theo h.

+ Tính thể tích của hình trụ theo h, cho biểu thức đó bằng 2π, từ đó giải phương trình tìm h.

b) + Diện tích xung quanh của hình trụ có bán kính đáy R và chiều cao h là: Sxq=2πRh.

+ Diện tích hai đáy hình trụ bán kính R là: S1=2.πR2.

Advertisements (Quảng cáo)

+ Diện tích toàn phần hình trụ: S={{S}_{xq}}+{{S}_{đáy}}.

Answer - Lời giải/Đáp án

a) V = \pi {R^2}h2R = h nên R = \frac{h}{2}, suy ra V = \pi {\left( {\frac{h}{2}} \right)^2}.h = \pi .\frac{{{h^3}}}{4}

Chiều cao của hình trụ là:

h = \sqrt[3]{{\frac{{4V}}{\pi }}} = \sqrt[3]{{\frac{{4 \cdot 2\pi }}{\pi }}} = \sqrt[3]{8} = 2\,\,\left( {{\rm{cm}}} \right).

b) Diện tích xung quanh của hình trụ là:

{S_{xq}} = 2\pi Rh = 2\pi .1.2 = 4\pi \left( {c{m^2}} \right).

Diện tích hai đáy của hình trụ là:

{{S}_{đáy}}=2\pi {{R}^{2}}=2.\pi .{{\left( \frac{2}{2} \right)}^{2}}=2\pi \left( c{{m}^{2}} \right)

Diện tích toàn phần của hình trụ là: {{S}_{tp}}={{S}_{xq}}+2{{S}_{đáy}}=4\pi +2\pi =6\pi \left( \text{c}{{\text{m}}^{2}} \right)

Advertisements (Quảng cáo)