Chọn phương án trả lời đúng trong mỗi câu sau:
Câu 1
Cho tứ giác ABCD nội tiếp một đường tròn với \(\widehat A = {70^o},\widehat B = {100^o}\). Khẳng định nào sau đây là đúng?
A. \(\widehat C = {110^o}\).
B. \(\widehat C = {80^o}\).
C. \(\widehat D = {110^o}\).
D. \(\widehat B - \widehat C = {30^o}\).
Vì ABCD là tứ giác nội tiếp nên \(\widehat A + \widehat C = {180^o},\widehat B + \widehat D = {180^o}\), từ đó tính các góc còn lại của tứ giác.
Vì tứ giác ABCD nội tiếp một đường tròn nên
\(\widehat A + \widehat C = {180^o},\widehat B + \widehat D = {180^o}\) nên \(\widehat C = {110^o},\widehat D = {80^o}\).
Chọn A
Câu 2
Cho hình chữ nhật ABCD có \(AB = 3cm,BC = 4cm\) và nội tiếp đường tròn (O; R). Khẳng định nào sau đây là sai?
A. O là trung điểm của AC.
B. O là trung điểm của BD.
C. \(R = 5cm\).
D. \(R = 2,5cm\).
Advertisements (Quảng cáo)
Đường tròn ngoại tiếp của hình chữ nhật có tâm là giao điểm của hai đường chéo và bán kính bằng nửa độ dài đường chéo.
Vì ABCD là hình chữ nhật và nội tiếp đường tròn (O; R). Do đó, O là trung điểm của AC và BD.
Áp dụng định lý Pythagore vào tam giác ABC vuông tại B có: \(A{C^2} = A{B^2} + B{C^2} = 25\) nên \(AC = 5cm\). Do đó, \(R = \frac{{AC}}{2} = 2,5cm\).
Chọn C
Câu 3
Khẳng định nào sau đây là đúng?
A. Có vô số đường tròn khác nhau cùng ngoại tiếp một hình vuông.
B. Mỗi đường tròn ngoại tiếp đúng một hình vuông.
C. Hai hình vuông có cạnh bằng nhau thì cùng nội tiếp một đường tròn.
D. Hai hình vuông cùng nội tiếp một đường tròn thì có diện tích bằng nhau.
Đường tròn ngoại tiếp của hình vuông có tâm là giao điểm của hai đường chéo và bán kính bằng nửa độ dài đường chéo.
Hai hình vuông cùng nội tiếp một đường tròn thì hai hình vuông đó có các đường chéo bằng nhau. Do đó, diện tích của hai hình vuông đó bằng nhau.
Vậy hai hình vuông cùng nội tiếp một đường tròn thì có diện tích bằng nhau.
Chọn D