Trang chủ Lớp 9 Vở thực hành Toán 9 (Kết nối tri thức) Bài 1 trang 44 vở thực hành Toán 9: Giải các phương...

Bài 1 trang 44 vở thực hành Toán 9: Giải các phương trình sau: 3x - 1 ^2 - x + 2 ^2 = 0; x x...

Đưa phương trình đã cho về dạng phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\). Hướng dẫn trả lời - Bài 1 trang 44 vở thực hành Toán 9 - Bài tập cuối chương II. Giải các phương trình sau: a) ({left( {3x - 1} right)^2} - {left( {x + 2} right)^2} = 0); b) (xleft( {x + 1} right) = 2left( {{x^2} - 1} right))...

Question - Câu hỏi/Đề bài

Giải các phương trình sau:

a) \({\left( {3x - 1} \right)^2} - {\left( {x + 2} \right)^2} = 0\);

b) \(x\left( {x + 1} \right) = 2\left( {{x^2} - 1} \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Đưa phương trình đã cho về dạng phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\).

+ Để giải phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\), ta giải hai phương trình \(ax + b = 0\) và \(cx + d = 0\). Sau đó lấy tất cả các nghiệm của chúng.

Answer - Lời giải/Đáp án

a) Ta có

\({\left( {3x - 1} \right)^2} - {\left( {x + 2} \right)^2} = 0\)

\(\left( {3x - 1 + x + 2} \right)\left( {3x - 1 - x - 2} \right) = 0\)

\(\left( {4x + 1} \right)\left( {2x - 3} \right) = 0\)

Suy ra \(4x + 1 = 0\) hoặc \(2x - 3 = 0\)

Advertisements (Quảng cáo)

+) \(4x + 1 = 0\) hay \(4x = - 1\), suy ra \(x = - \frac{1}{4}\).

+) \(2x - 3 = 0\) hay \(2x = 3\), suy ra \(x = \frac{3}{2}\).

Vậy phương trình đã cho có hai nghiệm là \(x = - \frac{1}{4}\) và \(x = \frac{3}{2}\).

b) Ta có \(x\left( {x + 1} \right) = 2\left( {{x^2} - 1} \right)\)

\(x\left( {x + 1} \right) = 2\left( {x - 1} \right)\left( {x + 1} \right)\)

\(x\left( {x + 1} \right) - 2\left( {x - 1} \right)\left( {x + 1} \right) = 0\)

\(\left( {x + 1} \right)\left[ {x - 2\left( {x - 1} \right)} \right] = 0\)

\(\left( {x + 1} \right)\left( { - x + 2} \right) = 0\)

Suy ra \(x + 1 = 0\) hoặc \( - x + 2 = 0\)

+) \(x + 1 = 0\) hay \(x = - 1\).

+) \( - x + 2 = 0\) hay \(x = 2\).

Vậy nghiệm của phương trình đã cho là \(x = - 1\), \(x = 2\).

Advertisements (Quảng cáo)