Trang chủ Lớp 9 Vở thực hành Toán 9 (Kết nối tri thức) Bài 4 trang 130, 131 vở thực hành Toán 9 tập 2:...

Bài 4 trang 130, 131 vở thực hành Toán 9 tập 2: các phương trình sau: 2/x + 1 - 2x/x^2 - x + 1 = 3/x^3 + 1...

Để giải phương trình chứa ẩn ở mẫu ta thường thực hiện các bước như sau: Bước 1. Vận dụng kiến thức giải Giải bài 4 trang 130, 131 vở thực hành Toán 9 tập 2 - Bài tập ôn tập cuối năm . Giải các phương trình sau: a) (frac{2}{{x + 1}} - frac{{2x}}{{{x^2} - x + 1}} = frac{3}{{{x^3} + 1}});

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Giải các phương trình sau:

a) \(\frac{2}{{x + 1}} - \frac{{2x}}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}\);

b) \(\frac{{x + 1}}{{2x - 1}} - \frac{2}{{2x + 1}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Để giải phương trình chứa ẩn ở mẫu ta thường thực hiện các bước như sau:

Bước 1. Tìm điều kiện xác định của phương trình.

Bước 2. Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3. Giải phương trình vừa tìm được.

Bước 4 (Kết luận). Trong các giá trị tìm được của ẩn ở Bước 3, giá trị nào thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho.

Answer - Lời giải/Đáp án

a) ĐKXĐ: \(x \ne - 1\). Ta có:

Advertisements (Quảng cáo)

\(\frac{2}{{x + 1}} - \frac{{2x}}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}\)

\(\frac{{2\left( {{x^2} - x + 1} \right) - 2x\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{3}{{{x^3} + 1}}\)

\(\frac{{ - 4x + 2}}{{{x^3} + 1}} = \frac{3}{{{x^3} + 1}}\)

\( - 4x + 2 = 3\)

\(x = - \frac{1}{4}\) (thỏa mãn ĐKXĐ)

Vậy phương trình đã cho có nghiệm là \(x = - \frac{1}{4}\).

b) ĐKXĐ: \(x \ne \pm \frac{1}{2}\). Ta có:

\(\frac{{x + 1}}{{2x - 1}} - \frac{2}{{2x + 1}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\)

\(\frac{{\left( {x + 1} \right)\left( {2x + 1} \right) - 2\left( {2x - 1} \right)}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\)

\(\frac{{2{x^2} - x + 3}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\)

\(2{x^2} - x + 3 = 2{x^2}\)

\(x = 3\) (thỏa mãn ĐKXĐ)

Vậy phương trình đã cho có nghiệm \(x = 3\).

Advertisements (Quảng cáo)