Trang chủ Lớp 10 SBT Toán 10 - Cánh diều Bài 18 trang 38 SBT Toán lớp 10 Cánh Diều: Kết quả...

Bài 18 trang 38 SBT Toán lớp 10 Cánh Diều: Kết quả dự báo nhiệt độ cao nhất trong 10 ngày liên tiếp ở Nghệ An cuối tháng 01 năm...

Giải bài 18 trang 38 sách bài tập toán 10 - Cánh diều - Bài 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm

Question - Câu hỏi/Đề bài

Kết quả dự báo nhiệt độ cao nhất trong 10 ngày liên tiếp ở Nghệ An cuối tháng 01 năm 2022 được cho ở bảng sau:

Ngày

22

23

24

25

26

27

28

29

30

31

Nhiệt độ (độ C)

23

25

26

27

27

Advertisements (Quảng cáo)

27

27

21

19

18

 

a) Viết mẫu số liệu thống kê nhiệt độ nhận được từ bảng trên

b) Tính số trung bình cộng, phương sai và độ lệch chuẩn của mẫu số liệu đó

+ Viết mẫu số liệu theo thứ tự không tăng

+ Dùng công thức tính số trung bình: \(\overline x  = \frac{{{x_1} + {x_2} + ... + {x_n}}}{n}\)

+ Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\) và độ lệch chuẩn \(S = \sqrt {{S^2}} \)

Answer - Lời giải/Đáp án

a) Viết mẫu số liệu theo thứ tự không tăng: 23; 25; 26; 27; 27; 27; 26; 21; 19; 18

b)

+ Số trung bình của mẫu số liệu là: \(\overline x  = \frac{{23 + 25 + 26 + 27 + 27 + 27 + 26 + 21 + 19 + 18}}{{10}} = 24\)

+ Phương sai: \({S^2} = \frac{1}{{10}}\left( {{{23}^2} + {{25}^2} + ... + {{18}^2}} \right) - {24^2} = 11,2\)

+ Độ lệch chuẩn: \(S = \sqrt {{S^2}}  = \sqrt {11,2}  = \frac{{2\sqrt {70} }}{5}\)

Advertisements (Quảng cáo)