Trang chủ Lớp 10 SBT Toán 10 - Cánh diều Bài 40 trang 92 SBT toán 10 Cánh diều: Cho tam giác...

Bài 40 trang 92 SBT toán 10 Cánh diều: Cho tam giác ABC thỏa mãn (left| { {AB}  + {AC} }...

Giải bài 40 trang 92 SBT toán 10 - Cánh diều - Bài 4. Tổng và hiệu của hai vectơ

Question - Câu hỏi/Đề bài

Cho tam giác ABC thỏa mãn \(\left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AB}  - \overrightarrow {AC} } \right|\) (*). Chứng minh tam giác ABC vuông tại A.

Bước 1: Dựng hình bình hành ABDC

Bước 2: Sử dụng quy tắc trừ hai vectơ và quy tắc hình bình hành để biến đổi giả thiết (*)

Bước 3: Sử dụng dấu hiệu nhận biết hình chữ nhật để chứng minh tam giác ABC vuông tại A

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Dựng hình bình hành ABDC. Khi đó  \(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AD} \)

Ta có: \(\left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AB}  - \overrightarrow {AC} } \right| \Leftrightarrow \left| {\overrightarrow {AD} } \right| = \left| {\overrightarrow {CB} } \right| \Leftrightarrow AD = BC\)

\( \Rightarrow \) Hình bình hành ABCD có hai đường chéo bằng nhau nên là hình chữ nhật

\( \Rightarrow \widehat {BAC} = {90^0}\). Vậy tam giác ABC vuông tại A (ĐPCM)

Advertisements (Quảng cáo)