Giải bài 5 trang 113 sách bài tập toán 10 - Chân trời sáng tạo - Bài 1. Số gần đúng và sai số
Gọi \(\overline h \)là độ dài đường cao của tam giác đều có cạnh bằng \(6cm\). Tìm số quy tròn của \(h\)với độ chính xác \(d = 0,01\)
Tính độ dài đường cao
Dùng quy tắc làm tròn số và xác định số quy tròn của số gần đúng theo độ chính xác cho trước.
Bước 1: Tìm hàng của chữ số khác 0 đầu tiên bên trái của \(d\).
Advertisements (Quảng cáo)
Bước 2: Quy tròn số \(a\)ở hàng gấp 10 lần hàng tìm được ở Bước 1.
Độ đài đường cao \(\overline h = \sqrt {{6^2} - {{\left( {\frac{6}{2}} \right)}^2}} = \sqrt {27} = 3\sqrt 3 \)
Ta có \(3\sqrt 3 = 5,1961524...\)
Vì hàng lớn nhất của \(d = 0,01\)là hàng phần trăm nên ta quy tròn số \(3\sqrt 3 \)đến hàng phần mười. Chữ số sau hàng quy tròn là \(9 > 5\)
Số quy tròn \(h = 5,2\)