Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương. Chứng minh rằng
\(\left| {\overrightarrow a } \right| - \left| {\overrightarrow b } \right| < \left| {\overrightarrow a + \overrightarrow b } \right| < \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|\)
- Gọi điểm \(O\) bất kỳ, \(\overrightarrow {OA} = \overrightarrow a ,\,\,\overrightarrow {AB} = \overrightarrow b \)
- Tính \(\overrightarrow {OB} \)
- Áp dụng bất đẳng thức tam giác
Advertisements (Quảng cáo)
Gọi điểm \(O\) bất kỳ, vẽ vectơ \(\overrightarrow {OA} = \overrightarrow a ,\,\,\overrightarrow {AB} = \overrightarrow b \)
\( \Rightarrow \) \(\overrightarrow {OB} = \overrightarrow {OA} + \overrightarrow {AB} = \overrightarrow a + \overrightarrow b \)
Vì hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương nên \(O,\,\,A,\,\,B\) không thẳng hàng.
Xét \(\Delta ABC,\) áp dụng bất đẳng thức tam giác ta có:
\(\begin{array}{l}OA - AB < OB < OA + AB\\ \Leftrightarrow \left| {\overrightarrow a } \right| - \left| {\overrightarrow b } \right| < \left| {\overrightarrow a + \overrightarrow b } \right| < \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|\end{array}\)