Bác Hùng dùng 200 m hàng rào dây thép gai để rào miếng đất đủ rộng thành một mảnh vườn hình chữ nhật.
a) Tìm công thức tính diện tích S(x) của mảnh vườn hình chữ nhật rào được theo chiều rộng x (m) của mảnh vườn đó
b) Tìm kích thước của mảnh vườn hình chữ nhật có diện tích lớn nhất có thể rào được.
a) Theo giả thiết, chu vi mảnh đất hình chữ nhật là 200 m \( \Rightarrow \) Nửa chu vi hình chữ nhật là 100 m
Advertisements (Quảng cáo)
Gọi x (m) (0 < x < 100) là chiều rộng mảnh vườn hình chữ nhật
\( \Rightarrow \) Chiều dài mảnh vườn hình chữ nhật là 100 – x (m)
Khi đó diện tích mảnh vườn hình chữ nhật là: \(S(x) = x(100 - x) \Leftrightarrow S(x) = - {x^2} + 100x\) (m2)
b) Ta có: \(S(x) = - {x^2} + 100x = - ({x^2} - 100x + 2500) + 2500 = - {(x - 50)^2} + 2500 \le 2500\)
\( \Rightarrow \) S(x) đạt GTLN là 2 500 khi x = 50
Vậy với kích thước hình chữ nhật là 50 x 50 (m) (rào mảnh vườn thành hình vuông) thì diện tích mảnh vườn lớn nhất.