Trang chủ Lớp 10 Toán lớp 10 - Chân trời sáng tạo Bài 3 trang 47 Toán 10 tập 1 – Chân trời sáng...

Bài 3 trang 47 Toán 10 tập 1 – Chân trời sáng tạo: Tìm các khoảng đồng biến, nghịch biến của các hàm số sau:...

Giải bài 3 trang 47 SGK Toán 10 tập 1 – Chân trời sáng tạo - Bài 1. Hàm số và đồ thị

Question - Câu hỏi/Đề bài

Tìm các khoảng đồng biến, nghịch biến của các hàm số sau:

a) \(f(x) =  - 5x + 2\)

b) \(f(x) = - {x^2}\)

Bước 1: Lấy \({x_1},{x_2} \in D\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Bước 2: Tìm điều kiện để \(f({x_1}) < f({x_2})\) và \(f({x_1}) > f({x_2})\)

a) \(f({x_1}) =  - 5{x_1} + 2,f({x_2}) =  - 5{x_2} + 2\)

b) \(f({x_1}) =  - {x_1}^2,f({x_2}) =  - {x_2}^2\)

Bước 3: Kết luận khoảng đồng biến, nghịch biến

+ \(f({x_1}) < f({x_2})\) với \(x \in {T_1}\) thì hàm số đồng biến trên khoảng \({T_1}\)

+ \(f({x_1}) > f({x_2})\) với \(x \in {T_2}\) thì hàm số nghịch biến trên khoảng \({T_2}\)

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

a) Xét hàm số \(y =  - 5x + 2\) xác định trên \(\mathbb{R}\)

Lấy \({x_1},{x_2} \in \mathbb{R}\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do  \({x_1} < {x_2}\) nên \( - 5{x_1} >  - 5{x_2}\), suy ra \( - 5{x_1} + 2 >  - 5{x_2} + 2\)

Từ đây ta có \(f({x_1}) > f({x_2})\)

Vậy hàm số ngịch biến (giảm) trên \(\mathbb{R}\)

b) Xét hàm số \(y = f(x) =  - {x^2}\) xác định trên \(\mathbb{R}\)

+ Trên khoảng \((0; + \infty )\) lấy \({x_1},{x_2} \in \mathbb{R}\) là hai số tùy ý sao cho \({x_1} < {x_2}\)., ta có: \(f({x_1}) - f({x_2}) =  - {x_1}^2 + {x_2}^2 = \left( {{x_2} - {x_1}} \right)({x_2} + {x_1})\)

Do  \({x_1} < {x_2}\) nên \( {x_2} - {x_1} > 0\) và do \({x_1},{x_2} \in (0; + \infty )\) nên \({x_1} + {x_2} > 0\).

Từ đây suy ra \(f({x_1}) - f({x_2}) > 0\) hay \(f({x_1}) > f({x_2})\)

Vậy hàm số nghịch biến (giảm) trên khoảng \((0; + \infty )\)

+ Trên khoảng \(( - \infty ;0)\) lấy \({x_1},{x_2} \in \mathbb{R}\) là hai số tùy ý sao cho \({x_1} < {x_2}\)., ta có: \(f({x_1}) - f({x_2}) =  - {x_1}^2 + {x_2}^2 = \left( {{x_2} - {x_1}} \right)({x_2} + {x_1})\)

Do  \({x_1} < {x_2}\) nên \( {x_2} - {x_1} > 0\) và do \({x_1},{x_2} \in ( - \infty ;0)\) nên \({x_1} + {x_2} < 0\).

Từ đây suy ra \(f({x_1}) - f({x_2}) < 0\) hay \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng \(( - \infty ;0)\)

Advertisements (Quảng cáo)