Trang chủ Lớp 10 Toán lớp 10 - Chân trời sáng tạo Bài 4 trang 93 Toán 10 tập 1 – Chân trời sáng...

Bài 4 trang 93 Toán 10 tập 1 – Chân trời sáng tạo: Cho hình bình hành ABCD có O là giao điểm hai đường chéo. Chứng mi...

Giải bài 4 trang 93 SGK Toán 10 tập 1 – Chân trời sáng tạo - Bài 2. Tổng và hiệu của hai vectơ

Question - Câu hỏi/Đề bài

Cho hình bình hành ABCD O là giao điểm hai đường chéo. Chứng minh rằng:

a) \(\overrightarrow {OA}  - \overrightarrow {OB}  = \overrightarrow {OD}  - \overrightarrow {OC;} \)                                   

b) \(\overrightarrow {OA}  - \overrightarrow {OB}  + \overrightarrow {DC}  = \overrightarrow 0 \)

Vận dụng quy tắc hiệu: \( \overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {BA}  \)

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) \(\overrightarrow {OA}  - \overrightarrow {OB}  = \overrightarrow {BA} \)

\(\overrightarrow {OD}  - \overrightarrow {OC}  = \overrightarrow {CD} \)

Do ABCD là hình bình hành nên \(\overrightarrow {BA}  = \overrightarrow {CD} \)

Suy ra, \(\overrightarrow {OA}  - \overrightarrow {OB}  = \overrightarrow {OD}  - \overrightarrow {OC} \)

b)  \(\overrightarrow {OA}  - \overrightarrow {OB}  + \overrightarrow {DC}  = (\overrightarrow {OD}  - \overrightarrow {OC})  + \overrightarrow {DC}  \\= \overrightarrow {CD}  + \overrightarrow {DC} = \overrightarrow {CC} = \overrightarrow 0 \)