Giải các hệ bất phương trình. Bài 16 trang 222 SGK Đại số 10 Nâng cao - ÔN TẬP CUỐI NĂM ĐẠI SỐ
Giải các hệ bất phương trình
a)
{x2−4>01x+1+1x+2≥1x
b)
{x2+3x+2<0xx+1≥0
Đáp án
a) Ta giải từng bất phương trình trong hệ đã cho:
x2−4>0⇔[x<−2x>2
Tập nghiệm là S1= (−∞;−2)∪(2,+∞)
Advertisements (Quảng cáo)
1x+1+1x+2≥1x⇔x(x+2)+x(x+1)−(x+1)(x−2)x(x+1)(x+2)≥0⇔x2−2x(x+1)(x+2)≥0
Lập bảng xét dấu:
Vậy S2=(−2;−√2]∪(−1,0)∪[√2,+∞)
Từ đó tập nghiệm của hệ bất phương trình là: S = S1 ∩ S2 = (2,+∞)
b) Ta có:
{x2+3x+2<0xx+1≥0⇔⎧⎪⎨⎪⎩−2<x<−1[x<−1x≥0
⇔−2<x<1
Vậy S=(−2,−1)