Trang chủ Lớp 10 Toán lớp 10 Nâng cao (sách cũ) Bài 59 trang 102 SGK Đại số 10 nâng cao, Biện luận...

Bài 59 trang 102 SGK Đại số 10 nâng cao, Biện luận số nghiệm của mỗi phương trình bằng đồ thị....

Biện luận số nghiệm của mỗi phương trình bằng đồ thị.. Bài 59 trang 102 SGK Đại số 10 nâng cao - Bài tập ôn tập chương 3

Cho các phương trình:

\(x^2+ 3x - m + 1 = 0\)  (1) và \(2x^2- x + 1 - 2p = 0\) (2)

a) Biện luận số nghiệm của mỗi phương trình bằng đồ thị.

b) Kiểm tra lại kết quả trên bằng phép tính.

a)

* Xét phương trình \({x^2} + {\rm{ }}3x{\rm{ }}-{\rm{ }}m{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\)

Ta có: (1) \( \Leftrightarrow {\rm{ }}{x^2} + {\rm{ }}3x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}m{\rm{ }}\)

Gọi (d) là đường thẳng \(y = m\).

Đồ thị hàm số \(y = x^2+ 3x + 1\) là parabol (P) có đỉnh là điểm \((-1,5; -1,25)\) và hướng bề lõm lên trên.

 

Do đó:

Advertisements (Quảng cáo)

+ Khi \(m < -1, 25\) thì (d) không cắt (P), phương trình vô nghiệm.

+ Khi \(m = -1,25\) thì (d) và (P) có một điểm chung, phương trình có một nghiệm.

+ Khi \(m > -1,25\) thì (d) cắt (P) tại hai điểm. Phương trình có hai nghiệm phân biệt.

* Xét phương trình \(2x^2- x + 1 – 2p = 0\)   (2)

(2) \(⇔ 2x^2 – x + 1 = 2p\)

Gọi (d) là đường thẳng \(y = 2p\);  (P) là parabol \(y = 2x^2– x + 1 \)

Parabol (P) có đỉnh tại điểm: \(({1 \over 4};\,{7 \over 8})\) và hướng bề lõm lên trên.

 

Do đó:

+ Nếu \(2p < {7 \over 8}\) , tức là \(p < {7 \over {16}}\) thì (d) không cắt (P), phương trình vô nghiệm.

+ Nếu \(2p = {7 \over 8}\) , tức là \(p = {7 \over {16}}\) thì (d) và (P) có một điểm chung, phương trình có một nghiệm.

+ Nếu \(2p > {7 \over 8}\) , tức là \(p > {7 \over {16}}\) thì (d) cắt (P) tại hai điểm chung, phương trình có hai nghiệm.

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: