Cho cấp số nhân \(\left( {{u_n}} \right)\), biết \({u_1} = 2,{u_3} = 18\).
a) Tìm công bội.
b) Tính tổng 10 số hạng đầu tiên của cấp số nhân đó.
a) Sử dụng kiến thức về số hạng tổng quát của cấp số nhân để tính: Nếu một cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).
b) Sử dụng kiến thức về tổng của n số hạng đầu tiên của cấp số nhân để tính: Giả sử \(\left( {{u_n}} \right)\) là một cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q \ne 1\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\), khi đó \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\).
Advertisements (Quảng cáo)
Ta có: \({u_3} = {u_1}.{q^2} = 18 \Rightarrow 2.{q^2} = 18 \Rightarrow q = \pm 3\)
Vậy cấp số nhân trên có công bội là \(q = 3\) hoặc \(q = - 3\)
b) Nếu \(q = 3\) thì tổng 10 số hạng đầu tiên của cấp số nhân là:
\({S_{10}} = \frac{{{u_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} = \frac{{2.\left( {1 - {3^{10}}} \right)}}{{1 - 3}} = 59\;048\)
Nếu \(q = - 3\) thì tổng 10 số hạng đầu tiên của cấp số nhân là:
\({S_{10}} = \frac{{{u_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} = \frac{{2.\left( {1 - {{\left( { - 3} \right)}^{10}}} \right)}}{{1 + 3}} = - 29\;524\)