Sử dụng công thức số hạng tổng quát \({u_n} = {u_1} + \left( {n - 1} \right)d\) để tìm công sai và áp dụng công thức tính tổng \({S_n} =. Giải chi tiết - Bài 2.36 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài tập cuối chương II. Cho cấp số cộng \({u_1} = - 2, \, \, {u_9} = 22\). Tổng của 50 số hạng đầu của cấp số cộng này là...
Cho cấp số cộng \({u_1} = - 2,\,\,{u_9} = 22\). Tổng của 50 số hạng đầu của cấp số cộng này là
A. 3570
B. 3575
C. 3576
D. 3580.
Advertisements (Quảng cáo)
Sử dụng công thức số hạng tổng quát \({u_n} = {u_1} + \left( {n - 1} \right)d\) để tìm công sai và áp dụng công thức tính tổng \({S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\).
Đáp án B.
\({u_9} = {u_1} + \left( {9 - 1} \right)d \Rightarrow 22 = - 2 + 8d \Rightarrow 8d = 24 \Rightarrow d = 3.\)
\({S_{50}} = \frac{{50}}{2}\left[ {2.( - 2) + \left( {50 - 1} \right).3} \right] = 3575\).