Trang chủ Lớp 11 SBT Toán 11 - Kết nối tri thức Bài 4.2 trang 55 SBT Toán 11 – Kết nối tri thức:...

Bài 4.2 trang 55 SBT Toán 11 - Kết nối tri thức: Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi M...

Để xác định giao tuyến của hai mặt phẳng, ta tìm hai điểm chung (phân biệt) của hai mặt phẳng đó. Trả lời - Bài 4.2 trang 55 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài 10. Đường thẳng và mặt phẳng trong không gian. Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh BC, CD...

Question - Câu hỏi/Đề bài

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh BC, CD.

a) Xác định giao tuyến của hai mặt phẳng (SAM) và (SCD).

b) Xác định giao tuyến của hai mặt phẳng (SBN) và (SAD).

c) Xác định giao tuyến của hai mặt phẳng (SAM) và (SBN).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Để xác định giao tuyến của hai mặt phẳng, ta tìm hai điểm chung (phân biệt) của hai mặt phẳng đó.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

a) Ta thấy S là điểm chung thứ nhất của hai mặt phẳng (SAM) và (SCD).

Trong mặt phẳng (ABCD): Gọi P là giao điểm của AM và CD => P là điểm chung thứ hai của mặt phẳng (SAM) và (SCD).

Vậy SP là giao tuyến của (SAM) và (SCD).

b) Ta thấy S là điểm chung thứ nhất của hai mặt phẳng (SBN) và (SAD).

Trong mặt phẳng (ABCD): Gọi Q là giao điểm của AM và CD => P là điểm chung thứ hai của mặt phẳng (SBN) và (SAD).

Vậy SQ là giao tuyến của (SBN) và (SAD).

c) Ta thấy S là điểm chung thứ nhất của hai mặt phẳng (SAM) và (SBN).

Trong mặt phẳng (ABCD): Gọi R là giao điểm của AM và BN => R là điểm chung thứ hai của mặt phẳng (SAM) và (SBN).

Vậy SR là giao tuyến của (SAM) và (SBN).

Advertisements (Quảng cáo)