Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Chứng minh rằng sau điểm A, B, C, D, E, F là sáu đỉnh của một hình lăng trụ tam giác.
Cho 2 mặt phẳng song song \(\left( \alpha \right)\) và \(\left( {\alpha ‘} \right)\). Trên \(\left( \alpha \right)\) cho các đa giác lồi \({A_1}{A_2}...{A_n}\). Qua các đỉnh \({A_1},{A_2},...,{A_n}\) vẽ các đường thẳng đôi một song song và cắt mặt phẳng \(\left( {\alpha ‘} \right)\) tại \({A_1}’,{A_2}’,...,{A_n}’\). Hình gồm hai đa giác \({A_1}{A_2}...{A_n},{A_1}'{A_2}’...{A_n}’\) và các tứ giác \({A_1}{A_1}'{A_2}'{A_2},{A_2}{A_2}'{A_3}'{A_3},...,{A_n}{A_n}'{A_1}'{A_1}\) được gọi là hình lăng trụ và kí hiệu là \({A_1}{A_2}...{A_n}.{A_1}'{A_2}’...{A_n}’\).
Advertisements (Quảng cáo)
Vì AD//BC (do ABCD là hình bình hành) nên AD//mp (BCE), AF//BE (do ABEF là hình bình hành) nên AF//mp (BCE).
Mà AD và AF là hai đường thẳng cắt nhau cùng nằm trong mặt phẳng ADF. Do đó, mp (ADF) //mp (BCE).
Các đường thẳng AB, CD, EF đôi một song song với nhau.