Tính \(y’\)Tìm giá trị nhỏ nhất của hệ số góc từ đó tìm tọa độ tiếp điểm Viết phương trình tiếp tuyến. Gợi ý giải - Bài 9.34 trang 64 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài tập cuối chương IX. Tiếp tuyến của đồ thị hàm số \(y = \frac{2}{3}{x^3} - 4{x^2} + 5x + 3\) với hệ số góc nhỏ nhất có phương trình là...
Tiếp tuyến của đồ thị hàm số \(y = \frac{2}{3}{x^3} - 4{x^2} + 5x + 3\) với hệ số góc nhỏ nhất có phương trình là
A. \(y = 3x - 25\).
B. \(y = - 3x + 25\).
C. \(y = - 3x + \frac{{25}}{3}\).
D. \(y = 3x - \frac{{25}}{3}\).
Tính \(y’\)
Advertisements (Quảng cáo)
Tìm giá trị nhỏ nhất của hệ số góc từ đó tìm tọa độ tiếp điểm
Viết phương trình tiếp tuyến
Hệ số góc tiếp tuyến của đồ thị hàm số có dạng \(k = y’ = 2{x^2} - 8x + 5\).
Khi đó ta có: \(k = 2({x^2} - 4x + 4) = 2{(x - 2)^2} - 3 \ge - 3\)
Dấu "=” đạt được, \({k_a} = - 3\), khi \(x = 2\) và \(y = \frac{7}{3}\).
Phương trình tiếp tuyến cần tìm là: \(y - \frac{7}{3} = - 3(x - 2) \Leftrightarrow y = - 3x + \frac{{25}}{3}\)