Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 1.9 trang 154 bài tập SBT Đại số và giải tích...

Bài 1.9 trang 154 bài tập SBT Đại số và giải tích 11: Tính giới hạn của các dãy số có số hạng tổng quát như sau...

Tính giới hạn của các dãy số có số hạng tổng quát như sau . Bài 1.9 trang 154 Sách bài tập (SBT) Đại số và giải tích 11 - Bài 1. Giới hạn của dãy số

Nếu \(\lim {v_n} = 0\) và \(\left| {{u_n}} \right| \le {v_n}\) với mọi n thì \(\lim {u_n} = 0\). Tính giới hạn của các dãy số có số hạng tổng quát như sau:

a)  \({u_n} = {1 \over {n!}}\) ;

b) \({u_n} = {{{{\left( { - 1} \right)}^n}} \over {2n - 1}}\) ;

c) \({u_n} = {{2 - n{{\left( { - 1} \right)}^n}} \over {1 + 2{n^2}}}\) ;

d) \({u_n} = {\left( {0,99} \right)^n}\cos n\)      ;

e) \({u_n} = {5^n} - \cos \sqrt n \pi \)   

Giải:

Advertisements (Quảng cáo)

a)     Vì \(\left| {{1 \over {n!}}} \right| < {1 \over n}\) với mọi n và \(\lim {1 \over n} = 0\) nên \(\lim {1 \over {n!}} = 0\)

b)     0 ;             c) 0 ;                   d) 0 ;

e)     Ta có \({u_n} = {5^n} - \cos \sqrt n \pi  = {5^n}\left( {1 - {{\cos \sqrt n \pi } \over {{5^n}}}} \right)\)    (1)

Vì \(\left| {{{\cos \sqrt n \pi } \over {{5^n}}}} \right| \le {1 \over {{5^n}}}\) và \(\lim {1 \over {{5^n}}} = 0\) nên \(\lim {{\cos \sqrt n \pi } \over {{5^n}}} = 0\)

Do đó, \(\lim \left( {1 - {{\cos \sqrt n \pi } \over {{5^n}}}} \right) = 1 > 0\)      (2)

Mặt khác,  \(\lim {5^n} =  + \infty \)    (3)           

Từ (1), (2) và (3) suy ra \(\lim \left( {{5^n} - \cos \sqrt n \pi } \right) = \lim {5^n}\left( {1 - {{\cos \sqrt n \pi } \over {{5^n}}}} \right) =  + \infty \)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)