Trang chủ Lớp 11 SBT Toán lớp 11 Bài 2.38 trang 84 SBT Hình học 11: Cho tứ diện ABCD...

Bài 2.38 trang 84 SBT Hình học 11: Cho tứ diện ABCD và điểm M nằm trong tam giác BCD....

Cho tứ diện ABCD và điểm M nằm trong tam giác BCD.. Bài 2.38 trang 84 Sách bài tập (SBT) Hình học 11 – Ôn tập Chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song

Advertisements (Quảng cáo)

Cho tứ diện ABCD và điểm M nằm trong tam giác BCD.

a)  Dựng đường thẳng qua M song song với hai mặt phẳng (ABC) và (ABD). Giả sử đường thẳng này cắt mặt phẳng (ACD) tại B’.

Chứng minh rằng AB’, BM và CD đồng quy tại một điểm.

b)  Chứng minh \({{MB’} \over {BA}} = {{dt\left( {\Delta MC{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}}\)

c)  Đường thẳng song song với hai mặt phẳng (ACB) và (ACD) kẻ từ M cắt (ABD) tại C’ và đường thẳng song song với hai mặt phẳng (ADC) và (ADB) kẻ từ M cắt (ABC) tại D’. Chứng minh rằng

\({{MB’} \over {BA}} + {{MC’} \over {CA}} + {{M{\rm{D}}’} \over {DA}} = 1\) 

a) MB’ qua M và song song với (ABC) và \(\left( {ABD} \right) \Rightarrow MB’\) song song với giao tuyến AB của hai mặt phẳng này. Ta có: \(MB’\parallel AB\) nên MB’ và AB xác định một mặt phẳng. Giả sử MB cắt AB’ tại I.

Ta có: \(I \in BM \Rightarrow I \in \left( {BC{\rm{D}}} \right)\)

\(I \in AB’ \Rightarrow I \in \left( {AC{\rm{D}}} \right)\) 

Nên \(I \in \left( {BC{\rm{D}}} \right) \cap \left( {AC{\rm{D}}} \right) = C{\rm{D}}\)

\(I \in C{\rm{D}}\)

Vậy ba đường thẳng AB’, BM và CD đồng quy tại I.

Advertisements (Quảng cáo)

b) \(MB’\parallel AB \Rightarrow {{MB’} \over {AB}} = {{IM} \over {IB}}\)

Kẻ \(MM’ \bot C{\rm{D}}\) và \(BH \bot C{\rm{D}}\)

Ta có: \(MM’\parallel BH \Rightarrow {{IM} \over {IB}} = {{MM’} \over {BH}}\)

Mặt khác:

\(\left\{ \matrix{
dt\left( {\Delta MC{\rm{D}}} \right) = {1 \over 2}C{\rm{D}}.MM` \hfill \cr
dt\left( {\Delta BC{\rm{D}}} \right) = {1 \over 2}C{\rm{D}}.BH \hfill \cr} \right.\)

\({{dt\left( {\Delta MC{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}} = {{{1 \over 2}C{\rm{D}}.MM’} \over {{1 \over 2}C{\rm{D}}.BH}} = {{MM’} \over {BH}}\)

Do đó: \({{MB’} \over {AB}} = {{IM} \over {IB}} = {{MM’} \over {BH}} = {{dt\left( {\Delta MC{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}}\). Vậy \({{MB’} \over {AB}} = {{dt\left( {\Delta MC{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}}\)

c) Tương tự ta có: \({{MC’} \over {CA}} = {{dt\left( {\Delta MB{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}}\)

\({{MD’} \over {DA}} = {{dt\left( {\Delta MBC} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}}\) 

Vậy : 

\(\eqalign{
& {{MB’} \over {AB}} + {{MC’} \over {CA}} + {{MD’} \over {DA}} \cr
& = {{dt\left( {\Delta MC{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}} + {{dt\left( {\Delta MB{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}} + {{dt\left( {\Delta MBC} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}} \cr
& = {{dt\left( {\Delta MC{\rm{D}}} \right) + dt\left( {\Delta MB{\rm{D}}} \right) + dt\left( {\Delta MBC} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}} \cr
& = {{dt\left( {\Delta BC{\rm{D}}} \right)} \over {dt\left( {\Delta BC{\rm{D}}} \right)}} = 1. \cr} \)