Trang chủ Lớp 11 SBT Toán 11 Nâng cao Câu 69 trang 63 Toán Hình 11 Nâng cao (SBT): Gọi E...

Câu 69 trang 63 Toán Hình 11 Nâng cao (SBT): Gọi E là giao điểm của AD và BC; M là trung điểm của AB; G là trọng...

Gọi E là giao điểm của AD và BC; M là trung điểm của AB; G là trọng tâm của tam giác ECD.. Câu 69 trang 63 Sách bài tập Hình học 11 nâng cao. Ôn tập chương II – Đường thẳng và mặt phẳng trong không gian. Quan hệ song song

69. Trang 63 Sách bài tập Hình học 11 nâng cao.

Cho hình chóp S.ABCD có đáy là hình thang  \(\left( {AB//CD,\,AB > CD} \right).\) Gọi E là giao điểm của AD và BC; M là trung điểm của AB; G là trọng tâm của tam giác ECD.

a) Chứng minh rằng các điểm S, E, M, G cũng thuộc một mặt phẳng và mặt phẳng này cắt cả hai mặt phẳng (SAC) và (SBD) theo cùng một đường thẳng \(\Delta \).

b) Gọi \({C_1}\) và \({D_1}\) là hai điểm lần lượt thuộc các cạnh SC, SD sao cho \(A{D_1}\) và \(B{C_1}\) cắt nhau tại K. Chứng minh các điểm S, K, E thẳng hàng và giao điểm \({O_1}\) của \(A{C_1}\) với \(B{D_1}\) thuộc \(\Delta \).

Quảng cáo

a) Gọi N là giao điểm của EM và CD. Do M là trung điểm của AB và AB // CD nên N cũng là trung điểm của CD; suy ra G thuộc EM, hay \(G \in mp\left( {SEM} \right),\) tức là các điểm S, E, M , G thuộc mp(SEM).

Gọi O là giao điểm của AC và BD thì đường thẳng MN đi qua O. Vậy ba mặt phẳng (SEM), (SAC) và (SBD) đều có chung hai điểm S và O nên SO chính là giao tuyến chung \(\Delta \) của ba mặt phẳng trên.

b) Vì K thuộc \(A{D_1}\) và \(B{C_1}\) nên tương ứng K thuộc mp(SAD) và mp(SBC). Do đó K nằm trên giao tuyến SE của hai mặt phẳng (SAD) và (SBC). Vậy ba điểm S, E, K thẳng hàng.

Điểm \({O_1}\) nằm trên \(A{C_1}\) và \(B{D_1}\) nên \({O_1}\) phải thuộc (SAC) và (SBD) (do \(A{C_1} \subset \left( {SAC} \right),\,B{D_1} \subset \left( {SBD} \right)\)). Từ đó, suy ra \({O_1}\) phải thuộc giao tuyến \(\Delta \) của hai mặt phẳng (SAC) và (SBD).

Quảng cáo