Trong không gian cho điểm O và bốn điểm A, B, C, D phân biệt và không thẳng hàng. Chứng minh rằng điều kiện cần và đủ để bốn điểm A, B, C, D tạo thành một hình bình hành là:
\(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow {OB} + \overrightarrow {O{\rm{D}}} \)
Giả sử bốn điểm A, B, C, D tạo thành một hình bình hành ta có:
\(\overrightarrow {BC} = \overrightarrow {A{\rm{D}}} \Leftrightarrow \overrightarrow {OC} - \overrightarrow {OB} = \overrightarrow {O{\rm{D}}} - \overrightarrow {OA} \) (với điểm O bất kì )
Advertisements (Quảng cáo)
\( \Leftrightarrow \overrightarrow {OC} + \overrightarrow {OA} = \overrightarrow {O{\rm{D}}} + \overrightarrow {OB} \)
Ngược lại, giả sử ta có hệ thức:
\(\overrightarrow {OC} + \overrightarrow {OA} = \overrightarrow {O{\rm{D}}} + \overrightarrow {OB} \)
\( \Leftrightarrow \overrightarrow {OC} - \overrightarrow {OB} = \overrightarrow {O{\rm{D}}} - \overrightarrow {OA} \)
\( \Leftrightarrow \overrightarrow {BC} = \overrightarrow {A{\rm{D}}} \)
Vì A, B, C, D không thẳng hàng nên tứ giác ABCD là hình bình hành.