Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 3.3 trang 36 Sách bài tập Đại số và giải tích...

Bài 3.3 trang 36 Sách bài tập Đại số và giải tích 11: Giải các phương trình sau...

Giải các phương trình sau. Bài 3.3 trang 36 Sách bài tập (SBT) Đại số và giải tích 11 - Bài 3. Một số phương trình lượng giác thường gặp

Giải các phương trình sau

a) \(3{\cos ^2}x - 2\sin x + 2 = 0\)

b) \(5{\sin ^2}x + 3\cos x + 3 = 0\)

c) \({\sin ^6}x + {\cos ^6}x = 4{\cos ^2}2x\)

d) \( - {1 \over 4} + {\sin ^2}x = {\cos ^4}x\)

a)

Advertisements (Quảng cáo)

\(\eqalign{
& 3{\cos ^2}x - 2\sin x + 2 = 0 \cr
& \Leftrightarrow 3\left( {1 - {{\sin }^2}x} \right) - 2\sin x + 2 = 0 \cr
& \Leftrightarrow 3{\sin ^2}x + 2\sin x - 5 = 0 \cr
& \Leftrightarrow \left( {\sin x - 1} \right)\left( {3\sin x + 5} \right) = 0 \cr
& \Leftrightarrow \sin x = 1 \cr
& \Leftrightarrow x = {\pi \over 2} + k2\pi ,k \in {\rm Z} \cr} \)

b) 

\(\eqalign{
& 5{\sin ^2}x + 3\cos x + 3 = 0 \cr
& \Leftrightarrow 5\left( {1 - {{\cos }^2}x} \right) + 3\cos x + 3 = 0 \cr
& \Leftrightarrow 5{\cos ^2}x - 3\cos x - 8 = 0 \cr
& \Leftrightarrow \left( {\cos x + 1} \right)\left( {5\cos x - 8} \right) = 0 \cr
& \Leftrightarrow \cos x = - 1 \cr
& \Leftrightarrow x = \left( {2k + 1} \right)\pi ,k \in {\rm Z} \cr} \)

c)

\(\eqalign{
& {\sin ^6}x + {\cos ^6}x = 4{\cos ^2}2x \cr
& \Leftrightarrow {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} - 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right) = 4{\cos ^2}2x \cr
& \Leftrightarrow 1 - {3 \over 4}{\sin ^2}2x = 4{\cos ^2}2x \cr
& \Leftrightarrow 1 - {3 \over 4}\left( {1 - {{\cos }^2}2x} \right) = 4{\cos ^2}2x \cr
& \Leftrightarrow {{13} \over 4}{\cos ^2}2x = {1 \over 4} \cr
& \Leftrightarrow 13\left( {{{1 + \cos 4x} \over 2}} \right) = 1 \cr
& \Leftrightarrow 1 + \cos 4x = {2 \over {13}} \cr
& \Leftrightarrow \cos 4x = - {{11} \over {13}} \cr
& \Leftrightarrow 4x = \pm \arccos \left( { - {{11} \over {13}}} \right) + k2\pi ,k \in {\rm Z} \cr
& \Leftrightarrow x = \pm {1 \over 4}\arccos \left( { - {{11} \over {13}}} \right) + k{\pi \over 2},k \in {\rm Z} \cr} \)

d) 

\(\eqalign{
& - {1 \over 4} + {\sin ^2}x = {\cos ^4}x \cr
& \Leftrightarrow - {1 \over 4} + {{1 - \cos 2x} \over 2} = {\left( {{{1 + \cos 2x} \over 2}} \right)^2} \cr
& \Leftrightarrow - 1 + 2 - 2\cos 2x = 1 + 2\cos 2x + {\cos ^2}2x \cr
& \Leftrightarrow {\cos ^2}2x + 4\cos 2x = 0 \cr
& \Leftrightarrow \left[ \matrix{
\cos 2x = 0 \hfill \cr
\cos 2x = - 4\left( {Vô\,\,nghiệm} \right){\rm{ }} \hfill \cr} \right. \cr
& \Leftrightarrow 2x = {\pi \over 2} + k\pi ,k \in {\rm Z} \cr
& \Leftrightarrow x = {\pi \over 4} + k{\pi \over 2},k \in {\rm Z} \cr} \)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)