Kết quả (b,c)của việc gieo con súc sắc cân đối và đồng chất hai lần, trong đó b là số chấm xuất hiện trong lần gieo đầu, c là số chấm xuất hiện ở lần gieo thứ hai, được thay vào phương trình bậc hai \({x^2} + bx + c = 0\)
Tính xác suất để
a) Phương trình vô nghiệm;
b) Phương trình có nghiệm kép;
c) Phương trình có nghiệm.
Không gian mẫu \(\Omega = \left\{ {\left( {b,c} \right):1 \le b,c \le 6} \right\}\). Kí hiệu A, B, C là các biến cố cần tìm xác suấtứng với các câu a), b), c). Ta có \(\Delta = {b^2} - 4c\)
Advertisements (Quảng cáo)
a)
\(\eqalign{
& A = \left\{ {\left( {b,c} \right) \in \Omega |{b^2} - 4c < 0} \right\} \cr
& {\rm{ }} = \left\{ \matrix{
\left( {1,1} \right),\left( {1,2} \right)..\left( {1,6} \right),\left( {2,2} \right)..\left( {2,6} \right), \hfill \cr
\left( {3,3} \right),\left( {3,4} \right),\left( {3,5} \right),\left( {3,6} \right),\left( {4,5} \right),\left( {4,6} \right) \hfill \cr} \right\}. \cr
& n\left( A \right) = 6 + 5 + 4 + 2 = 17,{\rm{ P}}\left( A \right) = {{17} \over {36}}. \cr} \)
b)
\(\eqalign{
& B = \left\{ {\left( {b,c} \right) \in \Omega |{b^2} - 4c = 0} \right\} \cr
& {\rm{ }} = \left\{ {\left( {2,1} \right),\left( {4,4} \right)} \right\}. \cr} \)
Từ đó \(P\left( B \right) = {2 \over {36}} = {1 \over {18}}\)
c)
\(C = \overline A \). Vậy \(P\left( C \right) = 1 - {{17} \over {36}} = {{19} \over {36}}\)