Chứng minh rằng. Bài 7 trang 171 Sách bài tập (SBT) Đại số và giải tích 11 - Ôn tập chương IV - Giới hạn
Chứng minh rằng hàm số \(f\left( x \right) = \cos {1 \over x}\) không có giới hạn khi \(x \to 0\)
Advertisements (Quảng cáo)
Hướng dẫn : Chọn hai dãy số có số hạng tổng quát là \({a_n} = {1 \over {2n\pi }}\) và \({b_n} = {1 \over {\left( {2n + 1} \right)\pi }}\). Tính và so sánh \(\lim f\left( {{a_n}} \right)\) và \(\lim f\left( {{b_n}} \right)\) để kết luận về giới hạn của \(f\left( x \right)\) khi \(x \to 0\)