Hoạt động 1
Nêu định nghĩa góc trong hình học phẳng.
Góc là hình gồm hai tia chung gốc. Mỗi góc có một số đo, đơn vị đo góc là độ hoặc radian.
Số đo của mỗi góc không vượt quá \({180^ \circ }\)
Luyện tập - VD 1
Hãy hoàn thành bảng chuyển đổi số đo độ và số đo radian của một số góc sau.
\(1\,rad = {\left( {\frac{{180}}{\pi }} \right)^0}\); \({1^0} = \left( {\frac{\pi }{{180}}} \right)\,rad\)
Ta có bảng chuyển đổi số đo độ và số đo radian của một số góc sau:
Độ |
\({18^ \circ }\) |
\(\frac{{2\pi }}{9}.\frac{{180}}{\pi } = {40^ \circ }\) |
\({72^ \circ }\) |
\(\frac{{5\pi }}{6}.\frac{{180}}{\pi } = {150^ \circ }\) |
Radian |
\(18.\frac{\pi }{{180}} = \frac{\pi }{{10}}\) |
\(\frac{{2\pi }}{9}\) |
\(72.\frac{\pi }{{180}} = \frac{{2\pi }}{5}\) |
\(\frac{{5\pi }}{6}\) |
Hoạt động 2
So sánh chiều quay của kim đồng hồ với:
a) Chiều quay từ tia Om đến tia Ox trong Hình 3a.
b) Chiều quay từ tia Om đến tia Oy trong Hình 3b.
a) Chiều quay từ tia Om đến tia Ox trong Hình 3a là chiều quay ngược chiều kim đồng hồ
b) Chiều quay từ tia Om đến tia Oy trong Hình 3b là chiều quay cùng chiều kim đồng hồ.
Luyện tập - VD 2
Đọc tên góc lượng giác, tia đầu và tia cuối của góc lượng giác trong Hình 4b.
Trong Hình 4b, góc lượng giác là (Oz,Ot) với tia đầu là tia Oz và tia cuối là tia Ot
Hoạt động 3
a) Trong Hình 5a, tia Om quay theo chiều dương đúng một vòng. Hỏi tia đó quét nên một góc bao nhiêu độ?
b) Trong Hình 5b, tia Om quay theo chiều dương ba vòng và một phần tư vòng ( tức là \(3\frac{1}{4}\)vòng). Hỏi tia đó quét nên một góc bao nhiêu độ?
c) Trong Hình 5c, toa Om quay theo chiều âm đúng một vòng. Hỏi tia đó quét nên một góc bao nhiêu độ?
Advertisements (Quảng cáo)
Một vòng ứng với \({360^ \circ }\)
a) Trong Hình 5a, tia Om quay theo chiều dương đúng một vòng. Tia đó quét nên một góc \({360^ \circ }\)
b) Trong Hình 5b, tia Om quay theo chiều dương ba vòng và một phần tư vòng ( tức là \(3\frac{1}{4}\)vòng). Tia đó quét nên một góc \({3.360^ \circ } + \frac{1}{4}{360^ \circ } = {1170^ \circ }\)
c) Trong Hình 5x, toa Om quay theo chiều âm đúng một vòng. Tia đó quét nên một góc -\({360^ \circ }\)
Luyện tập - VD 3
Hãy biểu diễn trên mặt phẳng góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo \( - \frac{{5\pi }}{4}\)
Ta có \( - \frac{{5\pi }}{4} = - \pi + \left( { - \frac{\pi }{4}} \right)\). Góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo \( - \frac{{5\pi }}{4}\) được biểu diễn ở hình sau:
Hoạt động 4
Trong Hình 7a, ba góc lượng giác có cùng tia đầu Ou và tia cuối Ov, trong đó Ou ⊥ Ov. Xác định số đo của góc lượng giác trong các Hình 7b, 7c, 7d.
Quan sát Hình 7 ta thấy:
+ Số đo của góc lượng giác có tia đầu Ou và tia cuối Ov trong Hình 7b) là 90°.
+ Số đo của góc lượng giác có tia đầu Ou và tia cuối Ov trong Hình 7c) là 360° + 90° = 450°.
+ Số đo của góc lượng giác có tia đầu Ou và tia cuối Ov trong Hình 7d) là – (360° – 90°) = 90° – 360° = 270°.
Luyện tập - VD 4
Viết công thức biểu thị số đo của các góc lượng giác có cùng tia đầu, tia cuối với góc lượng giác có số đo bằng \( - \frac{{4\pi }}{3}\).
Cho hai góc lượng giác (Ou, Ov), \((O’u’,O’v’)\)có tia đầu trùng nhau \(Ou \equiv O’u’\), tia cuối trùng nhau \(Ov \equiv O’v’\). Khi đó \((Ou,Ov) = (O’u’,O’v’) + k2\pi ,\,\,\,(k \in \mathbb{Z})\)
Ta có:
\((O’u’,O’v’) = (Ou,Ov) + k2\pi \,\, = \, - \frac{{4\pi }}{3}\, + k2\pi \,\,\,\,\,\,\,\,(k \in \mathbb{Z})\)
Hoạt động 5
Cho góc ( hình học) xOz, tia Oy nằm trong góc xOz ( Hình 8). Nêu mối liên hệ giữa số đo góc xOz và tổng số đo của hau góc xOy và yOz.
Ta có : \(\widehat {xOz} = \widehat {xOy} + \widehat {yOz}\)
Luyện tập - VD 5
Cho góc lượng giác (Ou,Ov) có số đo là \( - \frac{{11\pi }}{4}\), góc lượng giác (Ou,Ow) có số đó là \(\frac{{3\pi }}{4}\). Tìm số đo của góc lượng giác (Ov,Ow).
Áp dụng hệ thức Chasles:
Với ba tia tùy ý Ou,Ov,Ow ta có:
\((Ou,Ov) + (Ov,Ow) = (Ou,Ow) + k2\pi ,\,\,(k \in \mathbb{Z})\).
Theo hệ thức Chasles, ta có:
\(\begin{array}{l}(Ov,Ow) = (Ou,Ov) - (Ou,Ow) + k2\pi \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \, - \frac{{11\pi }}{4} - \frac{{3\pi }}{4} + k2\pi = - \frac{7}{2} + k2\pi ,\,\,(k \in \mathbb{Z})\end{array}\)