Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Bài 12 trang 86 Toán 11 tập 1 – Chân trời sáng...

Bài 12 trang 86 Toán 11 tập 1 - Chân trời sáng tạo: Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 25}}{{x - 5}}}&{khi\, \, x \ne 5}\\a&{khi\, \, x =...

Bước 1: Xét tính liên tục của hàm số trên từng khoảng xác định.Bước 2: Tính \(f\left( {{x_0}} \right)\).Bước 3: Tính \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\).Bước 4: Lời giải bài tập, câu hỏi bài 12 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo Bài tập cuối chương 3. Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 25}}{{x - 5}}}&{khi\, \, x \ne 5}\\a&{khi\, \, x = 5}\end{array}} \right. \)...

Question - Câu hỏi/Đề bài

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 25}}{{x - 5}}}&{khi\,\,x \ne 5}\\a&{khi\,\,x = 5}\end{array}} \right.\).

Tìm \(a\) để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Bước 1: Xét tính liên tục của hàm số trên từng khoảng xác định.

Bước 2: Tính \(f\left( {{x_0}} \right)\).

Bước 3: Tính \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\).

Advertisements (Quảng cáo)

Bước 4: Giải phương trình \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) để tìm \(a\).

Answer - Lời giải/Đáp án

Trên các khoảng \(\left( { - \infty ;5} \right)\) và \(\left( {5; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 25}}{{x - 5}}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;5} \right)\) và \(\left( {5; + \infty } \right)\).

Ta có: \(f\left( 5 \right) = a\)

\(\mathop {\lim }\limits_{x \to 5} f\left( x \right) = \mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}} = \mathop {\lim }\limits_{x \to 5} \frac{{\left( {x - 5} \right)\left( {x + 5} \right)}}{{x - 5}} = \mathop {\lim }\limits_{x \to 5} \left( {x + 5} \right) = 5 + 5 = 10\)

Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 5\). Khi đó: \(\mathop {\lim }\limits_{x \to 5} f\left( x \right) = f\left( 5 \right) \Leftrightarrow a = 10\).

Vậy với \(a = 10\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

Advertisements (Quảng cáo)