Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Bài 9 trang 86 Toán 11 tập 1 – Chân trời sáng...

Bài 9 trang 86 Toán 11 tập 1 - Chân trời sáng tạo: Tìm các giới hạn sau: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ - x + 2}}{{x...

Bước 1: Chia cả tử và mẫu cho lũy thừa bậc cao nhất của tử và mẫu.Bước 2: Hướng dẫn trả lời bài 9 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo Bài tập cuối chương 3. Tìm các giới hạn sau...

Question - Câu hỏi/Đề bài

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ - x + 2}}{{x + 1}}\);

b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x - 2}}{{{x^2}}}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Bước 1: Chia cả tử và mẫu cho lũy thừa bậc cao nhất của tử và mẫu.

Advertisements (Quảng cáo)

Bước 2: Tính các giới hạn của tử và mẫu rồi áp dụng các quy tắc tính giới hạn để tính giới hạn.

Answer - Lời giải/Đáp án

a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ - x + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\left( { - 1 + \frac{2}{x}} \right)}}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 1 + \frac{2}{x}}}{{1 + \frac{1}{x}}} = \frac{{\mathop {\lim }\limits_{x \to + \infty } \left( { - 1} \right) + \mathop {\lim }\limits_{x \to + \infty } \frac{2}{x}}}{{\mathop {\lim }\limits_{x \to + \infty } 1 + \mathop {\lim }\limits_{x \to + \infty } \frac{1}{x}}} = \frac{{ - 1 + 0}}{{1 + 0}} = - 1\)

b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x - 2}}{{{x^2}}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{x\left( {1 - \frac{2}{x}} \right)}}{{{x^2}}} = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{x}.\mathop {\lim }\limits_{x \to - \infty } \left( {1 - \frac{2}{x}} \right)\)

\( = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{x}.\left( {\mathop {\lim }\limits_{x \to - \infty } 1 - \mathop {\lim }\limits_{x \to - \infty } \frac{2}{x}} \right) = 0.\left( {1 - 0} \right) = 0\).

Advertisements (Quảng cáo)