Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Bài 2 trang 56 Toán 11 tập 2 – Chân trời sáng...

Bài 2 trang 56 Toán 11 tập 2 – Chân trời sáng tạo: Cho tứ diện đều ABCD. Chứng minh rằng ABCD...

Cách xác định góc giữa hai đường thẳng ab:Bước 1: Lấy một điểm O bất kì.Bước 2: Lời Giải bài 2 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo Bài 1. Hai đường thẳng vuông góc. Cho tứ diện đều (ABCD). Chứng minh rằng (AB bot CD)...

Question - Câu hỏi/Đề bài

Cho tứ diện đều ABCD. Chứng minh rằng ABCD.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Cách xác định góc giữa hai đường thẳng ab:

Bước 1: Lấy một điểm O bất kì.

Bước 2: Qua điểm O dựng đường thẳng aa và đường thẳng bb.

Bước 3: Tính (a,b)=(a,b).

Answer - Lời giải/Đáp án

Giả sử tứ diện đều ABCD có cạnh bằng a. Gọi M,N,P lần lượt là trung điểm của AC,BC,AD.

M là trung điểm của AC

N là trung điểm của BC

MN là đường trung bình của tam giác ABC

Advertisements (Quảng cáo)

MNAB,MN=12AB=a2

M là trung điểm của AC

P là trung điểm của AD

MP là đường trung bình của tam giác ACD

MPCD,MP=12CD=a2

Ta có: MNAB,MPCD(AB,CD)=(MN,MP)=^NMP

Ta có: BP là trung tuyến của tam giác ABDBP=2(AB2+BD2)AD22=a32

CP là trung tuyến của tam giác ACDCP=2(AC2+CD2)AD22=a32

NP là trung tuyến của tam giác BCPNP=2(BP2+CP2)BC22=a22

Xét tam giác MNP có:

cos^NMP=MN2+MP2NP22.MN.MP=0^NMP=90

Vậy (AB,CD)=90.

Advertisements (Quảng cáo)