Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Bài 2 trang 73 Toán 11 tập 2 – Chân trời sáng...

Bài 2 trang 73 Toán 11 tập 2 – Chân trời sáng tạo: Cho tam giác đều \(ABC\) cạnh \(a\), \(I\) là trung điểm của \(BC\)...

Cách chứng minh hai mặt phẳng vuông góc: chứng minh mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng. Hướng dẫn giải bài 2 trang 73 SGK Toán 11 tập 2 – Chân trời sáng tạo Bài 3. Hai mặt phẳng vuông góc. Cho tam giác đều (ABC) cạnh (a), (I) là trung điểm của (BC), (D) là điểm đối xứng với (A) qua (I)...

Question - Câu hỏi/Đề bài

Cho tam giác đều \(ABC\) cạnh \(a\), \(I\) là trung điểm của \(BC\), \(D\) là điểm đối xứng với \(A\) qua \(I\). Vẽ đoạn thẳng \(S{\rm{D}}\) có độ dài bằng \(\frac{{a\sqrt 6 }}{2}\) và vuông góc với \(\left( {ABC} \right)\). Chứng minh rằng:

a) \(\left( {SBC} \right) \bot \left( {SAD} \right)\);

b) \(\left( {SAB} \right) \bot \left( {SAC} \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Cách chứng minh hai mặt phẳng vuông góc: chứng minh mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng.

Answer - Lời giải/Đáp án

a) \(ABC{\rm{D}}\) là hình thoi \( \Rightarrow A{\rm{D}} \bot BC\)

\(S{\rm{D}} \bot \left( {ABC} \right) \Rightarrow S{\rm{D}} \bot BC\)

\(\left. \begin{array}{l} \Rightarrow BC \bot \left( {SA{\rm{D}}} \right)\\BC \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow \left( {SBC} \right) \bot \left( {SA{\rm{D}}} \right)\)

b) Kẻ \(IJ \bot SA\left( {J \in SA} \right)\).

\(\Delta ABC\) đều \( \Rightarrow AI = \frac{{a\sqrt 3 }}{2} \Rightarrow A{\rm{D}} = 2AI = a\sqrt 3 \)

\(\Delta SAD\) vuông tại \(D\) \( \Rightarrow S{\rm{A}} = \sqrt {S{D^2} + A{{\rm{D}}^2}} = \frac{{3a\sqrt 2 }}{2}\)

Xét \(\Delta SAD\) và \(\Delta IAJ\)có:

\(\begin{array}{l}\widehat {SDA} = \widehat {IJA} = {90^0}\\\widehat A\,\,chung\end{array}\)

Suy ra \(\Delta SAD\,\infty \,\Delta IAJ\,(g.g) \Rightarrow \frac{{JI}}{{SD}} = \frac{{AI}}{{SA}} \Rightarrow JI = \frac{{SD.AI}}{{SA}} = \frac{{\frac{{a\sqrt 6 }}{2}.\frac{{a\sqrt 3 }}{2}}}{{\frac{{3a\sqrt 2 }}{2}}} = \frac{a}{2}\)

Nên \(JI = \frac{{BC}}{2}\)

Tam giác \(BCJ\) có \(IJ\) là trung tuyến và \(IJ = \frac{1}{2}BC\)

Vậy tam giác \(BCJ\) vuông tại \(J \Rightarrow BJ \bot JC\)

\(\begin{array}{l}\left. \begin{array}{l}BC \bot \left( {SA{\rm{D}}} \right) \Rightarrow BC \bot SA\\IJ \bot SA\end{array} \right\} \Rightarrow SA \bot \left( {BCJ} \right)\\\left. \begin{array}{l} \Rightarrow SA \bot BJ\\BJ \bot JC\end{array} \right\} \Rightarrow BJ \bot \left( {SAC} \right)\end{array}\)

Mà \(BJ \subset \left( {SAB} \right)\)

Vậy \(\left( {SAB} \right) \bot \left( {SAC} \right)\).