Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Bài 5 trang 64 Toán 11 tập 2 – Chân trời sáng...

Bài 5 trang 64 Toán 11 tập 2 – Chân trời sáng tạo: Một cái lều có dạng hình lăng trụ \(ABC. A’B’C’\) có cạnh bên \(AA’\)vuông góc với đáy (Hình 24)...

a) Cách xác định góc giữa hai đường thẳng \(a\) và \(b\):Bước 1: Lấy một điểm \(O\) bất kì.Bước 2: Giải bài 5 trang 64 SGK Toán 11 tập 2 – Chân trời sáng tạo Bài 2. Đường thẳng vuông góc với mặt phẳng. Một cái lều có dạng hình lăng trụ (ABC. A'B'C') có cạnh bên (AA')vuông góc với đáy (Hình 24)...

Question - Câu hỏi/Đề bài

Một cái lều có dạng hình lăng trụ \(ABC.A’B’C’\) có cạnh bên \(AA’\)vuông góc với đáy (Hình 24). Cho biết \(AB = AC = 2,4m;BC = 2{\rm{ }}m;AA’ = 3m\).

a) Tính góc giữa hai đường thẳng \(AA’\) và \(BC\); \(A’B’\) và \(AC\).

b) Tính diện tích hình chiếu vuông góc của tam giác \(ABB’\) trên mặt phẳng \(\left( {BB’C’C} \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Cách xác định góc giữa hai đường thẳng \(a\) và \(b\):

Bước 1: Lấy một điểm \(O\) bất kì.

Bước 2: Qua điểm \(O\) dựng đường thẳng \(a’\parallel a\) và đường thẳng \(b’\parallel b\).

Bước 3: Tính \(\left( {a,b} \right) = \left( {a’,b’} \right)\).

b) Sử dụng phép chiếu vuông góc.

Answer - Lời giải/Đáp án

a) Ta có: \(AA’ \bot \left( {ABC} \right) \Rightarrow AA’ \bot BC \Rightarrow \left( {AA’,BC} \right) = {90^ \circ }\)

Advertisements (Quảng cáo)

\(A’B’\parallel AB \Rightarrow \left( {A’B’,AC} \right) = \left( {AB,AC} \right) = \widehat {BAC}\)

Xét tam giác \(ABC\) có:

\(\cos \widehat {BAC} = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} = \frac{{47}}{{72}} \Rightarrow \widehat {BAC} \approx {49^ \circ }15’\)

Vậy \(\left( {A’B’,AC} \right) \approx {49^ \circ }15’\).

b) Gọi \(I\) là trung điểm của \(BC\)

Tam giác \(ABC\) cân tại \(A \Rightarrow AI \bot BC\)

\(\left. \begin{array}{l}AA’ \bot \left( {ABC} \right)\\BB’\parallel AA’\end{array} \right\} \Rightarrow BB’ \bot \left( {ABC} \right) \Rightarrow BB’ \bot AI\)

\( \Rightarrow AI \bot \left( {BB’C’C} \right)\)

\( \Rightarrow I\) là hình chiếu vuông góc của \(A\) trên mặt phẳng \(\left( {BB’C’C} \right)\)

Có \(B,B’ \in \left( {BB’C’C} \right)\)

Vậy \(\Delta IBB’\) là hình chiếu vuông góc của \(\Delta ABB’\) trên mặt phẳng \(\left( {BB’C’C} \right)\)

Ta có: \(BB’ = AA’ = 3,BI = \frac{1}{2}BC = 1 \Rightarrow {S_{\Delta IBB’}} = \frac{1}{2}BB’.BI = 1,5\left( {{m^2}} \right)\)

Advertisements (Quảng cáo)